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Preface

Annual Conferences in Analytic and Algebraic Geometry have been organized
by Faculty of Mathematics and Computer Science of the University of Łódź since
1980. Until now, proceedings of these conferences (mainly in Polish) have comprised
educational materials describing current state of a branch of mathematics, new
approaches to known topics, and new proofs of known results (see the Internet
page: http://konfrogi.math.uni.lodz.pl/).

The subject of the present volume include new results and survey articles concer-
ning real and complex algebraic geometry, singularities of curves and hypersurfaces,
invariants of singularities (the Milnor number, degree of C0-sufficiency), algebraic
theory of derivations and others topics.

One remarkable element of this collection is an English translation of the Polish
version, published in proceedings of the above mentioned conferences, of an article
by Stanisław Łojasiewicz (1926-2002) devoted to the famous Hironaka theorem
on resolution of singularities. It contains his original approach to the problem in
the case of curves and coherent analytic sheaves on 2-dimensional manifolds. This
interesting article has not yet been available in English. Additionally, we add a
photo portrait of him and the facsimile of one page of his original handwritten
manuscript.

We would like to thank Arkadiusz Płoski for the help in preparing the volume,
Michał Jankowski for designing the cover, referees for preparing reports of the
articles and all participants of the Conferences for their good humor and enthusiasm
in doing mathematics.

Finally, we would like to thank Stanisław Łojasiewicz jr and Anna Ostoja-
Łojasiewicz, the heirs of Stanisław Łojasiewicz, for having agreed to include his
article into this volume.

We dedicate the whole volume to the memory of Stanisław Łojasiewicz.

Tadeusz Krasiński
Stanisław Spodzieja

November 2013, Łódź





Stanisław Łojasiewicz (9 X 1926 – 14 XI 2002)

(The photo was taken by Przemysław Skibiński in 2000)





The facsimile of the first page of the Polish handwritten version of the article
(1988) by Stanisław Łojasiewicz, translated in this volume.





Analytic and Algebraic Geometry
Łódź University Press 2013, 11 – 32

GEOMETRIC DESINGULARIZATION OF CURVES
IN MANIFOLDS ∗) ∗∗)

STANISŁAW ŁOJASIEWICZ

1. Introduction

The article does not pretend to any originality. In the literature there exists a
number of descriptions of desingularizations in the case of curves. Deciding for this
description the author think it is worth looking in details into this fascinating topic
in an easily accessible case, namely – in the effects of multi blowings-up for curves
in manifolds and for coherent sheaves on 2-dimensional manifolds.

All the needed facts from analytic geometry can be find in the author’s books
[L1], [L2].

2. The canonical blowing-up of Cn at 0

The blow-up of Cn at 0 is

Π = Πn = {(z, λ) : z ∈ λ} ⊂ Cn × P, P = Pn−1.

Taking the inverse atlas for Cn × P

γk : Cn × Cn−1 3 (z, w(k)) 7→
(z,C(w1, ..., 1

(k)
, ..., wn)) ∈ Cn × {P \ P({zk = 0})) = Gk, k = 1, ..., n,

2010 Mathematics Subject Classification. Primary 32Sxx, Secondary 14Hxx.
Key words and phrases. Resolution of singularities, curve, blowing-up, coherent analytic sheaf.
∗) This article was published (in Polish) in the proceedings of Xth Workshop on Theory

of Extremal Problems (1989) and has never appeared in translation elsewhere. To honor this
outstanding mathematician (who passed away in 2002) this article was translated into English
(by T. Krasiński) in order to make it accesible to the mathematical community.
∗∗) The translator thanks Dinko Pervan (an Erasmus student from Croatia) for preparing the

article in TeX and W. Kucharz, A. Płoski and Sz. Brzostowski for improving the English text.

11



12 STANISŁAW ŁOJASIEWICZ

(that is γk = (idCn)× (inverse mapping to the k-th canonical map on P)), we have
the inverse images of Π

Γk = γ−1
k (Π) = {(z, w(k)) : z ∈ C(w1, ..., 1, ..., wn)} =

{
(z, w(k)) : z(k) = zkw(k)

}
;

they are graphs of the polynomial mappings (zk, w(k)) → zkw(k), whence Π ⊂
Cn × P is an n-dimensional closed submanifold, (γk)Γk : Γk → Π∩Gk – its inverse
maps (they give an inverse atlas on Π); composing them with biholomorphisms:
(zk, w(k))→ (zkw1, ..., zk, ..., zkwn, w(k)) (domains onto the graphs of the preceding
polynomial mappings) we obtain an inverse atlas on Π

(∗) χk : Cn 3 (zk, w(k))→ (zkw1, ..., zk, ..., zkwn,C(w1, ..., 1, ..., wn)) ∈ Π ∩Gk.

The canonical projection p : Π → Cn is called the canonical blowing-up. The
fiber S0 = p−1(0) = 0 × P (biholomorphic to P) is called the exceptional set (the
exceptional submanifold); ΠCn\0 is the graph of the holomorphic mapping Cn \0 3
z → Cz ∈ P, whence pC

n\0 : ΠCn\0 → Cn \ 0 is a biholomorphism. Hence the
blowing-up p : Π→ Cn is a modification of Cn at 0. The inverse image p−1(E) of
a set E ⊂ Cn in the k-th coordinate system (∗) can be expressed by

(∗∗)
{

χ−1
k (p−1(E)) = (p ◦ χk)−1(E) where

p ◦ χk 3 (zk, w(k))→ (zkw1, ..., zk, ..., zkwn) ∈ Cn.

In particular χ−1
k (S0) = {zk = 0}.

The restrictions pΩ : ΠΩ → Ω, where Ω is an open neighbourhood of 0 at Cn,
are called the local canonical blowings-up.

3. The blowing-up of a manifold at a point

LetM be an n-dimensional manifold and a ∈M . A blowing-up ofM at the point
a is a holomorphic mapping of manifolds π : M̄ →M such that πM\a : M̄\π−1(a)→
M\a is a biholomorphism and for an open neighbourhood U of a, the mapping πU is
isomorphic to a local canonical blowing-up pΩ i.e. we have a commutative diagram

π−1(U) p−1(Ω)

U Ω

φ̄

φ

πU pΩ

-

-
? ?

for some biholomorphisms φ : U → Ω, φ(a) = 0 and φ̄ : π−1(U) → p−1(Ω).
(Notice that U and Ω can be abitrarily diminished). π is a proper mapping (because
πM\a and πU are proper). The fiber S = π−1(a), biholomorphic to P, is called
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the exceptional set (the exceptional submanifold) of the blowing-up. Thus π is a
modification of M at a.

The existence of blowing-up. We take a chart (a coordinate system) at a: φ :
U → Ω, φ(a) = 0, and define M̄ as a gluing-up of πΩ with M\a by the biholomor-
phism (φU\a)−1 ◦ pΩ\0 : ΠΩ\0 → U\a. (Its graph is closed in ΠΩ × (M\a) because
φ−1 ◦ pΩ is a closed set in ΠΩ ×M and

(
φ−1 ◦ pΩ

)
∩ (ΠΩ ×M\a) = φ−1

U\a ◦ p
Ω\0).

So we have the identifying biholomorphisms h0 : ΠΩ → D0, h1 : M\a→ D1, where
Di ⊂ M̄, i = 0, 1, are open sets, M̄ = D0 ∪D1 and h−1

1 ◦ h0 = φ−1
U\a ◦ p

Ω\0. Hence

h−1
1 (D0) = U\a (the domains of both sides) which implies h1(U\a) ⊂ D0. Next
g = φ−1◦p◦h−1

0 : D0 →M contains (h−1
1 )D0 , and hence π = h−1

1 ∪g : M̄ →M is a
holomorphic maping. Then πM\a = h−1

1 (because h−1 ⊃ φ−1 ◦ pΩ\0 ◦ h−1
0 = gM\a)

is a biholomorphism on the image. At last, φ ◦πU ⊃ φ ◦ g ⊃ pΩ ◦h−1
0 which implies

the equality, because the domains are equal (π−1(U) = h−1
1 (U\a) ∪ D0 = D0),

whence the above diagram is commutative with φ̄ := h−1
0 .

Remark 1. Obviously, if G is an open neighbourhood of a at M then π : M̄ →M
is a blowing-up at a if and only if πM\a is a biholomorphism and πG is a blowing-up
at a.

Proposition 1. If h : M → N is a biholomorphism of manifolds, h(a) = b,
π1 : M̄ →M is a blowing-up at a, π2 : N̄ → N a blowing-up at b, then there exists
a biholomorphism h̄ : M̄ → N̄ such that the diagram

(#)

M̄ N̄

M N

h̄

h

π1 π2

-

-
? ?

is commutative



14 STANISŁAW ŁOJASIEWICZ

Dowód. Choosing by definition: φ : U → Ω and φ̄ - for π1, and ψ : V → ∆ and ψ̄ -
for π2, such that h(U) = V, we have a commutative diagram

π−1
1 (U) π−1

2 (V )

p−1(Ω) p−1(∆)

Ω ∆

U V

h′

ᾱ

α

hU

πU1 pΩ p∆ πV2

φ̄ ψ̄

φ ψ

-

-

-

-
? ?

? ?

@
@
@@R

�
�
�
��

�
�

��	

@
@

@
@I

where α := ψ ◦ hU ◦ φ−1, and it suffices to complement it by biholomorphisms:
ᾱ : p−1(Ω)→ p−1(∆) and h′ := ψ̄−1 ◦ ᾱ ◦ φ̄. Then in the commutative diagrams

π−1
1 (U) π−1

2 (V )

U V

h′

hU

πU1 πV2

-

-
? ?

π−1
1 (M\a) π−1

2 (N\b)

M\a N\b

h′′

hM\a

π
M\a
1 π

N\b
2

-

-
? ?

where the biholomorphism h′′ is defined by the remaining arrows (which are bi-
holomorphisms), the biholomorphisms h′ and h′′ give rise to a biholomorphism
h̄ = h′ ∪ h′′ : M̄ → N̄ . In fact, it suffices to find a holomorphic mapping ᾱ :
p−1(Ω) → p−1(∆) such that p∆ ◦ ᾱ = α ◦ pΩ (i.e. the commutativity of the inner
rectangle) and a similar holomorphic mapping β̄ : p−1(∆)→ p−1(Ω) for α−1, since
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then we obtain the commutative triangle

p−1(Ω) p−1(Ω)
β̄ ◦ ᾱ

p∆pΩ

Ω

�
�

�
�
��	

@
@
@
@
@@R

-

which implies β̄ ◦ ᾱ = idp−1(Ω) (because we have the equality on the dense set
p−1(Ω)\S0), and similarly ᾱ◦ β̄ = id p−1(∆). Obviously it suffices to find ᾱ (because
the construction of β̄ is analogous) for sufficiently small Ω and ∆.

According to the Hadamard Lemma (since α(0) = 0) one can choose neighbour-

hoods Ω,∆ such that α = (α1, ..., αn), αi(z) =
n∑
j=1

aij(z)zj and det aij(z) 6= 0 in Ω.

Define a(z, w) = (
n∑
j=1

a1j(z)wj , ...,
n∑
j=1

anj(z)wj) in Ω×Cn; then a(z, z) = α(z) and

a(z, w) 6= 0 for w 6= 0. Hence we may define a holomorphic mapping ā : Ω × P 3
(z,Cw)→ (α(z),Ca(z, w)) ∈ ∆×P. Since ā(z,Cz) = (α(z),Cα(z)) for z ∈ Ω\0 and
ā(0 × P) ⊂ 0 × P, then we have the holomorphic restriction ᾱ = āΠΩ : ΠΩ → Π∆,
and hence p∆(ᾱ(z,Cz)) = α(z) = α(pΩ(z,Cz)) for z ∈ Ω\0, that is p∆ ◦ ᾱ = α ◦ pΩ

by density of ΠΩ\0 in ΠΩ. �

4. The proper inverse image

Let π : M̄ → M be a blowing-up at a point a ∈ M . The proper inverse image
(by π) of a set V ⊂M closed in a neighbourhood of a (i.e. V ∩U is a closed set in
U for some neighbourhood U of a) is defined by

V̄ = the closure of the set π−1(V \a) = π−1(V )\S in π−1(V ).

(It is obtained from the set π−1(V )\S by adding to it its accumulation points
belonging to S). If V is analytic in a neighbourhood of a then V̄ is analytic in
a neighbourhood of the exceptional set S (since π−1(V ) and S are analytic in a
neighbourhood of S). Obviously

π−1(V ) = V̄ ∪ S.
If U is an open neighbourhood of a, then the proper inverse image of the set V ∩U

is V̄ ∩π−1(U). If W ⊂ V then W̄ ⊂ V̄ , and if V =
k⋃
i=1

Zi, then V̄ =
k⋃
i=1

Z̄i, (provided

W,Zi are closed in a neighbourhood of a). If D ⊃ V is an open neighbourhood of
a then V̄ is the proper inverse image of V if and only if it is the same by the
blowing-up πD.
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In Proposition 1 the biholomorphism h̄ sends the exceptional submanifold π−1
1 (a)

onto the exceptional submanifold π−1
2 (b), and the proper inverse image of V onto

the proper inverse image of h(V ).

The proper inverse image of a linear subspace L ⊂ Cn of dimension k by the
canonical blowing-up is L̄ = {(z, λ) ∈ L × P(L) : z ∈ λ}; it is a submanifold of
dimension k and pL̄ : L̄ → L is a blowing-up at 0. (For taking an isomorphism
χ : L→ Ck we have the commutative diagram

L̄ Πk

L Ck

ψL̄

χ

pL̄ pk

-

-
? ?

where ψ = χ × χ′ : L × P(L) → Ck × Pk, χ′ : P(L) 3 λ → χ′(λ) ∈ Pk are
biholomorphisms and ψ(L) = Πk).

5. The transversality

Proposition 2. If M is a linear space of dimension n then linear subspaces
L1, ..., Lr ⊂ M intersect transversally (in M) if and only if in some linear co-
ordinate system in M it is

Li = {zυ = 0, υ ∈ Ii}, where I1, ..., Ir ⊂ {1, ..., n} are disjoint.

Dowód. The sufficiency is obvious because codimLi = #Ii. Conversely, if Li inter-
sect transversally, then the sum

∑
L⊥i = (

⋂
Li)⊥ is direct because dim

∑
L⊥i =

codim
⋂
Li =

∑
codimLi =

∑
dimL⊥i . Hence there exists a basis φ1, ..., φn of

the dual space M∗ such that {φυ : υ ∈ Ii} generate L⊥i where Ii ⊂ {1, ..., n} are di-
sjoint. Then Li = {φυ = 0, υ ∈ Ii}, that is Li = {zυ = 0, υ ∈ Ii} in the coordinate
system φ = (φ1, ..., φn) (because φ−1({zυ = 0, υ ∈ Ii}) = Li). �

Corollary 1. If Li, i ∈ I, intersect transversally and J ⊂ I, then also Li, i ∈ J,
intersect transversally. If I∩J = ∅ and Li, i ∈ I∪J, intersect transversally then so
do
⋂
I

Li and
⋂
J

Li. If L1, ..., Lr, T intersect transversally then so do L1∩T, ..., Lr∩T

in T .

Proposition 3. If M is a manifold of dimension n, then submanifolds N1, ..., Nr
intersect transversally at a point a ∈

⋂
Ni if and only if there exists a chart (a

coordinate system at a) φ : U → Ω, φ(a) = 0, such that φ(Ni ∩U) = Ti ∩Ω, where
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Ti ⊂ Cn are subspaces that intersect transversally, so it may be

Ti = {ui = 0}, where z = (u1, ..., ur, v) ∈ Cn = CI1 × ...× CIr × CJ .

Dowód. The sufficiency is clear. For the necessity we may assume M = Cn, a = 0
and T0Ni = Ti as above. Then there exists an open neighbourhood U = Ω1 ×
... × Ωr × ∆ of the origin in Cn and functions εi(u(i), v) with values in CIi , ho-
lomorphic in Ui = Ω1 × ...(i)... × Ωr × ∆, such that d0εi = 0 and Ni ∩ U =
{ui = εi(u(i), v), (u(i), v) ∈ Ui}. After shrinking U the mapping φ : U 3 z →
(u1−ε1(u(1), v), ..., ur−εr(u(r), v), v) ∈ Ω is a biholomorphism onto a neighbourho-
od Ω of the origin and hence Ni∩U = φ−1(Ti) which implies φ(Ni∩U) = Ti∩Ω. �

Corollary 2. If submanifolds Ni, i ∈ I, intersect transversally at a point a and
J ⊂ I, then so do the submanifolds Ni, i ∈ J . If I ∩ J = ∅ and submanifolds
Ni, i ∈ I ∪ J , intersect transversally at a then so do the submanifolds

⋂
I

Ni and⋂
J

Ni.

Corollary 3. If submanifolds Ni intersect transversally then N =
⋂
Ni is a sub-

manifold and codimN =
∑

codimNi.

We say submanifolds Ni of a manifold M are mutually transversal in an open
set G ⊂ M , if Ni ∩ G are closed and for each a ∈ G submanifolds Ni containing
a intersect transversally at a. Notice that if subspaces of a linear space intersect
transversally then they are mutually transversal in this space (by Corollary 1 and
from the fact that if subspaces intersect transversally, then they intersect transver-
sally at each point of their intersection). Hence (by Proposition 3)

Corollary 4. If submanifolds Ni intersect transversally at a ∈
⋂
Ni, then they are

mutually transversal in a neighbourhood of the point a.

6. The effect of blowing-up

Let M be a manifold of dimension n and let π : M̄ → M be a blowing-up at
point a ∈M, and S = π−1(a) ⊂ M̄ – the exceptional set.

Proposition 4. If Γ ⊂ M , Γ 3 a, is a submanifold of dimension s then its
proper inverse image Γ̄ ⊂ M̄ is a submanifold of dimension s which intersects S
transversally and the submanifold Γ̄∩S is biholomorphic to Ps−1. Then πΓ̄ : Γ̄→ Γ
is a blowing-up at a with the exceptional set Γ̄ ∩ S.

Dowód. The set Γ̄\S = π−1(Γ\a) is a submanifold of dimension s and (πΓ̄)Γ\a :
Γ̄\S → Γ\a is a biholomorphism. Let us take a chart φ : U → Ω, φ(a) = 0, such that
φ(Γ∩U) = L∩Ω, where L = {z1 = ... = zr = 0} (r = n−s). It suffices to show the
proposition for πU and Γ∩U because then the proper inverse image of Γ∩U, that
is Γ∩π−1(U), will be a submanifold (of dimension s) and (πU )Γ̄∩π−1(U) = (πΓ̄)Γ∩U

will be a blowing-up at a, whence Γ̄ will be a submanifold and πΓ̄ a blowing-up at
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a (see Remark 1). According to Proposition 1, it suffices to prove the proposition
for pΩ, L∩Ω and 0. Since the proper inverse image of L∩Ω is L̄∩p−1(Ω), where L̄
is the proper inverse image of L by p, and (pΩ)L̄∩p−1(Ω) = (pL̄)L∩Ω, then it suffices
to prove the proposition for p, L and 0. But L̄ is a submanifold of dimension s,
pL̄ : L̄→ L is a blowing-up at 0 and L̄ ∩ S0 = 0× P(L) (see Section 4). It remains
to prove the transversality. We have (see (∗∗) in Section 2)

χ−1
k (p−1(L) =

{
{zk = 0} if k ¬ r
{zk = 0} ∪ {w1 = ... = wr = 0} if k > r,

so by χ−1
k (S0) = {zk = 0} it is

χ−1
k (L̄) =

{
∅ if k ¬ r
{w1 = ... = wr = 0} if k > r,

whence (Proposition 2) the transversality of the intersection of L̄ and S0 follows.
�

Proposition 5. If submanifolds Γ1, ...,Γr ⊂ M intersect transversally at a and
Γ̄1, ..., Γ̄r are their proper inverse images then Γ̄1, ..., Γ̄r, S are mutually transversal
in a neighbourhood of S. If additionally Γi intersect transversally then the proper
inverse image of Γ =

⋂
Γi is Γ̄ =

⋂
Γ̄i.

Dowód. If U is an open neighbourhood of a then the proper inverse image of Γi∩U
(Γ∩U) is Γ̄i∩π−1(U) (Γ̄∩π−1(U)). By Propositions 3 and 1 it suffices to consider
the canonical blowing-up p and Γi = Ti = {zυ = 0, υ ∈ Ii}, Ii disjoint (by the fact
Γ̄\S =

⋂
(Γ̄i\S)). Let T̄i denote the proper inverse image of Ti. We have (see (∗∗)

in Section 2)

χ−1
k (p−1(Ti) =

{
{zk = 0} if k ∈ Ii
{zk = 0} ∪ {wυ = 0, υ ∈ Ii} if k /∈ Ii,

so

χ−1
k (T̄i) =

{
∅ if k ∈ Ii
{wυ = 0, υ ∈ Ii} if k /∈ Ii,

which implies (Proposition 2) that T̄i, ..., T̄r, S are mutually tranversal in Π. If T̄
is the proper inverse image of T =

⋂
Ti then T = {zυ = 0, υ ∈ I}, where I =

⋃
Ii,

and in the same way

χ−1
k (T̄ ) =

{
∅ if k ∈ I
{wυ = 0, υ ∈ I} if k /∈ I,

so χ−1
k (T̄ ) =

⋂
χ−1
k (T̄i), whence T̄ =

⋂
T̄i. �

Let C(a) = C(a,M) denote the set of curves Γ ⊂ M (i.e. local analytic subsets
of constant dimension 1) such that a ∈ Γ and the germ Γa is irreducible. Then

(6.1) C(a) =
∞⋃
p=1

Cp(a),
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where Cp(a) = Cp(a,M) denotes the set of curves Γ in C(a) having, in some coor-
dinate system φ in a (i.e. φ is a chart such that φ(a) = 0), the form (that is φ(Γ)
is a set of the form)

(6.2)
{
z1 = tp

v = c(t)tq
|t| < σ,

where v = (z2, ...zn), q  p, and c is a holomorphic function in {|t| < σ} (σ > 0).
(For it is of the form {f(t) : |t| < σ}, where f is a holomorphic mapping, a
homeomorphism onto its image, f(0) = 0; it is f(t) = g(t)tp, p  1, g(0) 6= 0, and
after changing the system of coordinates one may have g1(0) 6= 0; then g1 = γp

with γ holomorphic in a neighbourhood of the origin, γ(0) 6= 0, and it suffices
to change the parameter putting τ = γ(t)t in a neighbourhood of the origin). In
particular, C1(a) is the set of all curves Γ 3 a smooth at a.

A set Γ0 of the form (6.2) (without any restriction on q) is always a curve in Cn
having its germ irreducible at 0. (For the mapping {|t| < σ} 3 t → (tp, c(t)tq) ∈
{|z1| < σp} ⊂ Cn is proper). Let us notice that replacing σ by 0 < σ̄ < σ we
obtain an open neighbourhood of 0 in Γ0 (precisely Γ0 ∩ {|z1| < σ̄p}). If 0 < q < p
and c(0) 6= 0 then Γ0 ∈ Cq. In fact, if for example c2(0) 6= 0 then (changing the
parameter to τ = tγ(t), where γq = c2) for sufficiently small ε, a neighbourhood
Uε of the origin and holomorphic bi, the sets Γε = {z1 = tp, v = c(t)tq, t ∈ Uε} =
{z2 = τ q, zi = bi(τ)τ q, i 6= 2, |τ | < ε} are neighbourhoods of 0 in Γ0. But Γε0 ⊂
Γ0 ∩ {|z1| < σ0} ⊂ Γε for some σ0, ε0 > 0, hence Γε0 is an open set in Γε and so in
Γ0.

It is

(6.3) Cp(a) = C1(a) ∪
⋃
Cp,q(a),

where Cp,q(a), q > p is not divisible by p, is the set of all the curves in C(a) that
have the form (6.2) in some coordinate system at a, where c(0) 6= 0. In fact, if in
(6.2) we have v =

∑
cpνt

pν then the curve (6.2) is smooth (it suffices to change
the parameter to τ = tp). In the remaining cases v = apt

p + ... + akpt
kp + c(t)tq,

where c(0) 6= 0 and pk < q < p(k + 1), and it suffices to replace the coordinates to
z′1 = z1, v

′ = v − apz1 − ...− akpzk1 (it is a biholomorphism of Cn onto Cn).

Let us notice that if a curve Γ 3 a is smooth at a, then its proper inverse image
Γ̄ intersects S at a unique point: Γ̄ ∩ S = {ā} and in a transversall way.

Proposition 6. Let Γ be a curve in Cp,q, p > 1. Then its proper inverse image
Γ̄ is a curve and Γ̄ ∩ S = {ā}; if q > 2p then Γ̄ ∈ Cp,q−p(ā), and if q < 2p then
Γ̄ ∈ Cq−p(ā).
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Dowód. We may restrict considerations to the canonical blowing-up (a = 0) and Γ
of form (2), where c(0) 6= 0 and |c(t)| ¬M . Then (see (∗∗) in Section 2)

χ−1
1 (p−1(Γ)) = {z1 = tp, z1w(1) = c(t)tq, |t| < σ}

= {z1 = 0} ∪ {z1 = tp, w(1) = c(t)tq−p, |t| < σ},
and for k > 1

χ−1
k (p−1(Γ)) = {zkw1 = tp, ..., zk = ck(t)tq, ..., |t| < σ}

⊂ {zk = 0} ∪ {|zk|q−p|w1|q M−p}.
Hence

χ−1
1 (Γ̄) = {z1 = tp, w(1) = c(t)tq−p, |t| < σ} ∈

{
Cp,q−p(0) if q > 2p
Cq−p(0) if q < 2p

and χ−1
k (Γ̄) ∩ χ−1

k (S) = ∅ for k > 1. Then Γ̄ ∩ S = {ā}, where ā = χ1(0), and
Γ̄ ∈ Cp,q−p(ā) if q > 2p, and Γ̄ ∈ Cq−p(ā) if q < 2p. �

Smooth curves Γ1,Γ2 3 a are tangent of order p at a if in some (and then in each)
coordinate system φ at a in which they are topographic: φ(Γi) = {v = gi(z1), z1 ∈
Ui}, the function g2 − g1 has a zero of order p at 0.

Proposition 7. Let smooth curves Γ1,Γ2 3 a be tangent of order p at a, and let
Γ̄1, Γ̄2 be their proper inverse images. If p > 1 then Γ̄1 ∩ S = Γ̄2 ∩ S = {ā} and
Γ̄1, Γ̄2 are tangent of order p− 1 at a; if p = 1 then Γ̄1 ∩ S 6= Γ̄2 ∩ S.

Dowód. We may restrict considerations to the canonical blowing-up (a = 0) and
Γ1 = {v = 0, |z1| < σ}, Γ2 = {v = c(z1)zp1 , |z1| < σ}, c is a holomorphic mapping,
c(0) 6= 0, |c(z1)| ¬ M . Then (see (∗∗) in Section 2) χ−1

1 (p−1(Γ1)) = {z1 = 0} ∪
{w(1) = 0, |z1| < σ}, χ−1

1 (p−1(Γ2)) = {z1 = 0} ∪ {w(1) = c(z1)zp−1
1 , |z1| < σ} and

χ−1
k (p−1(Γi)) ⊂ {|zk| ¬ M |zkw1|p} ⊂ {zk = 0} ∪ {|zk|p|w1|p−1  1/M} for k > 1.

Hence χ−1
k (Γ̄i) ∩ χ−1

k (S) = ∅ for k > 1 and χ−1
1 (Γ̄1) = {w(1) = 0, |z1| < σ} and

χ−1
1 (Γ̄2) = {w(1) = c(z1)zp−1

1 , |z1| < σ}. So if p > 1 then Γ̄1 ∩ S = Γ̄2 ∩ S = {ā},
where ā = χ1(0), and Γ̄1, Γ̄2 are tangent of order p− 1 at ā. If in turn p = 1 then
Γ̄1 ∩ S = {χ1(0)} and Γ̄2 ∩ S = {χ1(0, c(0))}. �

A smooth curve Γ 3 a is tangent of order p at a to a submanifold N 3 a if it is
tangent of order p at a to a smooth curve Γ0 = N ∩ L, where L is a submanifold
of dimension codimN + 1 transversal to N and containing a neighbourhood of a
at Γ.

Proposition 8. Let a smooth curve Γ 3 a be tangent of order p at a to a subma-
nifold N 3 a; let Γ̄, N̄ be their proper inverse images and let Γ̄ ∩ S = {ā}. If p > 1
then ā ∈ N̄ and Γ̄ is tangent of order p− 1 at ā to N̄ ; if p = 1 then ā /∈ N̄ .

Dowód. One can assume that the submanifold L contains Γ, is transversal to N
and the smooth curve Γ0 = N∩L is tangent of order p at a to Γ. So, we have L̄ ⊃ Γ̄,
L̄ is transversal to N̄ and Γ̄0 = N̄ ∩ L̄ is a smooth curve (Proposition 5). According
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to Proposition 7: if p > 1 then Γ̄ and Γ̄0 are tangent of order p− 1 at ā, so ā ∈ N̄
and Γ̄ is tangent of order p− 1 at ā to N̄ ; if p = 1 then N̄ ∩ L̄∩ S = Γ̄0 ∩ S = {c̄},
c̄ 6= ā, but ā ∈ L̄, so ā /∈ N̄ . �

7. Geometric desingularization of a curve in a manifold

Let M be a manifold. We say an analytic subset V ⊂M is a normal crossing sub-
set if irreducible components of its germs Va, a ∈ V , are germs of smooth hyper-
surfaces intersecting transversally at a. In particular such sets are:

Sets of type τ : they are unions of smooth compact hypersurfaces which are mu-
tually transversal. By Propositions 4 and 5:

(l) The inverse-image of a set of type τ (with irreducible components N1, ..., Nr if
r > 0) by a blowing-up is a set of type τ (with irreducible components N̄1, ..., N̄r, S
if r > 0, where S is the exceptional set).

A set of type τ ′ is one of type τ or one-point set. Obviously, the inverse image
of a set of type τ ′ by a blowing-up is a set of type τ . Let Z ⊂ M be of type τ ′.
We say a curve Γ ⊂M is crosswise to Z (at c ∈ Z) if it is closed, Γ ∩ Z = c, Γc is
irreducible and Γ− c is smooth. In particular Γ is crosswise to c.

We say sets Ei are separated by a set F if Ei\F are disjoint. This property is
preserved by the operation of taking inverse images.

(2) Let π : M̄ → M be a blowing-up at a ∈ Z, Z of type τ ′. Then: Γ is
crosswise to Z implies Γ̄ is crosswise to π−1(Z), and π−1(Γ∪Z) = Γ̄∪ π−1(Z) (by
Propositions 6 and 4). If Γ is smooth, crosswise to Z and transversal to Z (in case
Z is not one-point set) then Γ̄ is smooth, crosswise and transversal to π−1(Z) (by
Propositions 5 and 4). If Γi are crosswise to Z then: Γi are separated by Z implies
Γ̄i are separated by π−1(Z). If Γi are disjoint then Γ̄i are disjoint.

A multiple blowing-up over E ⊂ M is a composition of blowings-up π = π1 ◦
... ◦ πr : M̄ →M, where

Er−1 E1 E0 = E

M̄ = Mr
πr→
∩
Mr−1 → ...→

∩
M1

π1→
∩
M0 = M

πi : Mi → Mi−1 is the blowing-up at a point of Ei−1, i = 1, ..., r, and Ei =
π−1
i (Ei−1), i = 1, ..., r − 1. Then π is also a multiple blowing-up over F ⊃ E . If E

is analytic and nowhere dense then π is a modification in E. Obviously:

(3) If π : M̄ → M is a multiple blowing-up over E and π̄ : M̊ → M̄ – over
π−1(E) then π ◦ π̄ : M̊ →M is a multiple blowing-up over E.

(4) If M is open in a manifold N and π : M̄ →M is a multiple blowing-up over
E ⊂ M then π = πM1 , where π1 : N̄ → N is a multiple blowing-up over E, M̄ is
open in N̄ (by Proposition 1 and Remark 1).
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(5) The inverse image of a set of type τ ′ by a multiple blowing-up is a set of
type τ .

(6) Let π : M̄ → M be a multiple blowing-up over a set Z of type τ ′. If Γ
is crosswise to Z then consecutively using the operation of taking proper inverse
images by π1, ..., πr we obtain, according to (2), a curve Γ̄ ⊂ M̄ which is crosswise
to π−1(Z). It is called the proper inverse image of the curve Γ by the multiple
blowing-up π, and then π−1(Γ∪Z) = Γ̄∪π−1(Z) (hence Γ̄ = π−1(Γ)\π−1(Z)). By
(2):

(a) Γ smooth, crosswise to Z and transversal to Z (in case Z is not a
one-point set) implies Γ̄ is smooth, crosswise and transversal to π−1(Z). If Γi are
crosswise to Z then:

(b) Γi separated by Z implies Γ̄i separated by π−1(Z),

(c) Γi disjoint implies Γ̄i disjoint. Moreover:

(d) If Γ is crosswise to Z and Γ̊ is the proper inverse image of Γ̄ by a multiple
blowing-up π̄ : M̊ → M̄ over π−1(Z) then Γ̊ is the proper inverse image of Γ by
π ◦ π̄.

(7) Let Γ be crosswise to a. By the first implication in (2) we recursively define
a sequence of blowings-up ... → Mi

πi→ Mi−1 → ... → M1
π1→ M and a sequence of

triplets ai ∈ Γi ⊂Mi, where Γi is crosswise to ai, where a0 = a, Γ0 = Γ, M0 = M ,
in such a way that: πi is the blowing-up at ai−1, Γi is the proper inverse image of
Γi−1 and {ai} = Γi ∩ π−1

i (ai−1). Then π(k) = π1 ◦ ... ◦ πk : Mk → M is a multiple
blowing-up over a by which Γk is the proper inverse image of Γ.

(A) If Γ is crosswise to a then there exists a multiple blowing-up over a such
that the proper inverse image Γ̄ is smooth.

In fact, let us take a sequence of blowings-up as in (7) for Γ. We will show that
for some i the proper inverse image Γi of Γ by π(i) belongs to C1(ai), and so it is
smooth. Namely Γ = Γ0 belongs to some Cr(a0) (see Section 6). By Proposition
6, if Γυ ∈ Cp,q(aυ), p > 1, then Γυ+1 belongs to Cp,q−p(aυ+1) if q > 2p, and to
Cq−p(aυ+1) if q < 2p (and then q − p < p). So, if Γi ∈ Cp(ai), p > 1, then some Γj
(j > i) belongs to Cs(aj), where s < p.

(B) If Γ,Γ′ are smooth, crosswise to a and separated by a then there exists a
multiple blowing-up over a such that proper inverse images Γ̄, Γ̄′ are disjoint.

In fact, let us consider constructions of sequences πi,Γi, ai for Γ and π′i,Γ
′
i, a
′
i for

Γ′ described in (7). We may take the same first blowing-up π1 = π′1 at a0 = a′0 = a,
and (by the assumption) the curves Γ0,Γ′0 3 a0 are separated by a0; let p be their
order of tangency. Let us consider the following condition:

(σk) for i ¬ k we can take the same blowings-up πi = π′i at ai−1 = a′i−1 and
Γi−1,Γ′i−1 are separated by ai−1 and tangent at ai−1 of order p− i+ 1.

By the above (σ1) holds. Suppose (σk) holds for k < p; then (σk+1) holds; in
fact, Γk−1,Γ′k−1 are tangent at ak−1 of order p− k + 1, so by Proposition 7 there
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is ak = a′k, and taking the same blowing-up πk+1 = π′k+1 at ak we have Γk,Γ′k are
tangent of order p − k at ak, crosswise to π−1

k (ak−1) and separated by π−1
k (ak−1)

(see (2)), and so separated by ak. In consequence (σp) holds, that is we may have
πi = π′i for i ¬ p and curves Γp−1,Γ′p−1 are separated by ap−1 and tangent of order
1 at ap−1. Hence by Proposition 7 the curves Γp,Γ′p have different points ap, a′p in
π−1
p (ap−1), but (see (2)) they are separated by π−1

p (ap−1) and so they are disjoint.
Hence π(p) is a required multiple blowing-up over a.

(C) If Γ is smooth and crosswise at a to Z of type τ ′ then there exists a multiple
blowing-up π over a such that the proper inverse image Γ̄ of Γ intersect transversally
π−1(Z).

In fact, let us take a sequence of blowings-up as in (7) for Γ (treated as crosswise
to a). Then Γk are smooth and transversal to π−1

k (ak−1) (Proposition 4). The
sets Zk = π−1

(k)(Z) are of type τ . Since (see (6)) Γk is crosswise to Zk 3 ak then
Zk ∩ Γk = {ak}. Let N1, ..., Nr be irreducible components of Zk and consider the
following condition

(τp) Ni 3 ak =⇒ Γk is tangent of order ¬ p at ak to Ni,

and notice that if Ni 63 ak then Γk ∩ Ni = ∅. By (1) the irreducible components
of Zk+1 are proper inverse images by πk+1 : N̄1, ..., N̄r and π−1

k+1(ak) (the latter
is transversal to Γk+1 at ak+1). Hence, by Proposition 8, if Γk is tangent at ak of
order q to Ni 3 ak then Γk+1 is tangent at ak+1 of order q − 1 to N̄i 3 ak+1 when
q > 1, and N̄i 63 ak+1 when q = 1. So, if (τp), p > 1, holds for k, then (τp−1) holds
for k + 1. Hence for some k the condition (τ1) holds, and then Γk+1 is disjoint
with N̄1, ..., N̄r and transversal to π−1

k+1(ak) i.e. intersect transversally Zk+1. Then
π(k+1) is a required multiple blowing-up over a.

(8) If Γ is crosswise at a to Z of type τ ′ then there exists a multiple blowing-up
π over a such that proper inverse image Γ̄ of Γ is smooth, crosswise and transversal
to π−1(Z).

In fact, by (A) there exists a multiple blowing-up π1 : M1 →M over a such that
the proper inverse image Γ̄ ⊂ M1 is smooth; by (6) it is crosswise to π−1(Z) of
type τ (see (5)) at c ∈ π−1

1 (Γ)∩π−1
1 (Z) = π−1

1 (a), so by (C) there exists a multiple
blowing-up π2 : M2 → M1 over c such that the proper inverse image Γ̊ ⊂ M2

of the curve Γ̄ is smooth, transversal and croosswise (by (6) and c ∈ π−1
1 (Z)) to

π−1
2 (π−1

1 (Z)) = π−1(Z), where π = π1 ◦ π2 : M2 → M is a multiple blowing-up
over a (by (3) and c ∈ π−1(a)), which satisfies the assertion (by (6) (d)).

Proposition 9. If Γ1, ...,Γr are crosswise to a and separated by a then there exist
a multiple blowing-up π over a such that the proper inverse images Γ̄1, ..., Γ̄r are
smooth, disjoint, and crosswise and transversal to π−1(a).

Dowód. For the case r = 1 it is precisely (8) taking Z = {a}. Assume the proposi-
tion is true for r − 1, (r > 1); so there exists a multiple blowing-up π1 : M1 → M
over a such that, if Γ̄i ⊂ M1 are proper inverse images of Γi then Γ̄1, ..., Γ̄r−1
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are smooth, disjoint, and crosswise and transversal to Z1 = π−1
1 (a) of type τ (see

(5)). Then (see (6)) Γ̄r is crosswise to Z1 and we have Γ̄r ∩ Z1 = {a1}. By (8)
there exists a multiple blowing-up π2 : M2 → M1 over a1 such that if Γ̊i ⊂ M2

are proper inverse images of Γ̄i then Γ̊r is smooth, crosswise and transversal to
Z2 = π−1

2 (Z1) = π−1
0 (a), where π0 = π1 ◦ π2 : M2 →M is the multiple blowing-up

over a (see (3)). Then Γ̊1, ..., Γ̊r−1 are smooth, disjoint, and crosswise and trans-
versal to Z2 (see (6) (a) and (c)); moreover (see (6) (d)) the curves Γ̊i are proper
inverse images of Γi by π0 and so they are separated by Z2 (see (6) (b)). If they are
disjoint, π0 satisfies the condition of the proposition. In the remaining cases is for
example Γ̊r ∩ Γ̊1 = {a2}, a2 ∈ Z2, and then Γ̊r is disjoint with Γ̊2, ..., Γ̊r−1, that is
Γ̊2, ..., Γ̊r are disjoint. By (B) there exists a multiple blowing-up π3 : M3 →M2 over
a2 such that if Γ′i ⊂M3 are proper inverse images of Γ̊i then Γ′r and Γ′1 are disjoint.
But (see (6) (a)) Γ′i are smooth, crosswise and transversal to π−1

3 (Z2) = π−1(a),
where π = π0 ◦π3 : M3 →M is a multiple blowing-up over a (see (3)), under which
Γ′i are proper inverse images of Γi (see (6) (d)); moreover (see (6) (c)) Γ′1, ...,Γ

′
r−1

and Γ′2, ...,Γ
′
r are disjoint and so Γ′i are disjoint. Then π satisfies the condition of

the proposition. �

Proposition 10. If Γ ⊂ M is a closed curve and the set of its singular points
Γ∗ is finite then there exists a multiple blowing-up π over Γ∗ such that π−1(Γ) =
Λ ∪ Z, where Z = π−1(Γ∗) is of type τ , and Λ a smooth, closed curve which
intersects transversally Z. In other words: π−1(Γ) = N1∪ ...∪Nr∪Λ, where Ni are
smooth, compact hypersurfaces, Λ a smooth, closed curve, N1, ..., Nr,Λ are mutually
tranversal and π−1(Γ∗) = N1 ∪ ... ∪Nr.

Dowód. Let Γ∗ = {a1, ..., ak} and assume the proposition is true for k − 1 pro-
vided k > 1. There exists an open neighbourhood U of the point ak such that
a1, ..., ak−1 /∈ U and Γ ∩ U = Γ1 ∪ ... ∪ Γr, where Γi are closed curves in U ,
crosswise to ak and separated by ak. By Proposition 9 there exists a multiple
blowing-up π1 : M1 → M over ak such that the proper inverse images Γ̄i of the
curves Γi by the multiple blowing-up πU1 are closed in U1 = π−1

1 (U), smooth, di-
sjoint and transversal to Z1 = π−1

1 (ak) and (by (6)) π−1(Γi) = Γ̄i ∪ Z1. Then
Γ̄0 =

⋃
Γ̄i is a closed curve in U1, smooth and intersect transversally Z1, and

π−1
1 (Γ∩U) = Γ̄0∪Z1. The curve π−1

1 (Γ)\Z1 is closed in M1\Z1 and its all singular
points are bi = π−1

1 (ai), i = 1, ..., k − 1. Since Γ̄0 ∩ (U1\Z1) = π−1
1 (Γ ∩ U)\Z1 =

(π−1
1 (Γ)\Z1) ∩ (U1\Z1) then Γ̄ = (π−1

1 (Γ)\Z1) ∪ Γ̄0 is closed in M1 which in-
tersects transversally Z1 and Γ̄∗ = {b1, ..., bk−1}. It is π−1

1 (Γ) = Γ̄ ∪ Z1 (since
π−1

1 (Γ) = π−1
1 (Γ ∩ U) ∪ π−1

1 (Γ\ak)). If k = 1 then π1 satisfies the conditions of
the proposition. So, let us assume k > 1. Then (by the induction hypothesis) there
exists a multiple blowing-up π2 : M2 → M1 over Γ̄∗ such that π−1

2 (Γ̄) = Λ ∪ Z2,
where Λ ⊂ M2 is a closed, smooth, intersect transversally Z2 = π−1

2 (Γ̄∗) of type
τ . Then π = π1 ◦ π2 : M2 → M is a multiple blowing-up over Γ∗ (see (3)) and
π−1(Γ) = π−1

2 (Γ̄) ∪ π−1
2 (Z1) = Λ ∪ Z, where Z = Z2 ∪ π−1

2 (Z1) = π−1(Γ∗). Since
Z1 ⊂ U1 is disjoint with Γ∗ then π−1

2 (Z1) ⊂ π−1
2 (U1) is disjoint with Z2 and πU1

2 is
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a biholomorphism. Then π−1
2 (Γ̄∩U1) = Λ∩π−1

2 (U1) intersect transversally π−1
2 (Z1)

and so Λ intersect transversally π−1
2 (Z1). Then Λ intersect transversally Z and π

satisfies the conditions of the proposition. �

8. Blowing-up of submanifolds

Let M be a n-dimensional manifold and n = p + q. Let f1, ..., fq ∈ O(M)
and assume f = (f1, ..., fq) : M → Cq is a submersion. Then L = f−1(0) is a
submanifold of dimension p. The subset

Mf = {(z, λ) : f(z) ∈ λ} ⊂M × Pq−1,

that is Mf = φ−1(Πq), where φ = f × e : M × Pq−1 → Cq × Pq−1, e = idPq−1, is
also a submersion, is a closed submanifold of dimension n. The canonical projection

πf : Mf →M

is called an elementary blowing-up by functions f1, ..., fq. It is a modification in
the set L called the centre of blowing-up. It is so because πf is a proper map-
ping, (Mf )M\L = Mf\π−1

f (L) is the graph of the holomorphic mapping M\L 3
z → Cf(z) ∈ Pq−1, hence πM\Lf : Mf\π−1

f (L) → M\L is a biholomorphism, and
π−1
f (L) = L×Pq−1 is a closed, smooth hypersurface called the exceptional set of the

blowing-up. Of course πGf = πfG is an elementary blowing-up by (fi)G with centre
L ∩G.

Proposition 11. If additionally g = (g1, ..., gq) : M → Cq is a submersion and∑
O(M)fi =

∑
O(M)gi (i.e. fi and gj generate the same ideal in O(M); then

g−1(0) = f−1(0) = L), then the blowings-up πf and πg are isomorphic: the diagram

Mf Mg
ι

πgπf

M

�
�

�
�
��	

@
@
@
@
@@R

-

is commutative, where ι is a biholomorphism.

Corollary 5. If πi : Mi → M are elementary blowings-up with the centre L then
arbitrary point a ∈ L has an open neighbourhood U in M such that πU1 ≈ πU2 .

In particular we have the elementary blowing-up of Cn by v = (zp+1, ..., zn):

Cnv = {(z, λ) ∈ Cn × Pq−1 : v ∈ λ} = Cp ×Πq

and
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πv = (idCp)× πq : Cp ×Πq → Cp × Cq.
The blowings-up πΩ

v , where Ω is an open neighbourhood of 0 in Cn is called
standard.

(#) Let L ⊂ M be a p-dimensional submanifold. If φ : U → Ω is a chart
at a (φ(a) = 0) such that φ(L ∩ U) = {v = 0} ∩ Ω then ψ = (φp+1, ..., φn) is a
submersion and the blowing-up πψ is isomorphic to the elementary blowing-up πΩ

v

Uψ (Cp × πq−1)Ω

U Ω

(φ× e)Uψ

φ

πψ πΩ
v

-

-
? ?

Notice that if f : M̄ → M is a modification in an analytic set Z ⊂ M and
G ⊂M is an open set then fG : f−1(G)→ G is a modification in Z ∩G.

Proposition 12. If fi : Mi →M are modifications (i = 1, 2) and M =
⋃
Gι is an

open cover then f1 ≈ f2 if and only if fGι1 ≈ fGι2 for every ι.

Corollary 6. Elementary blowings-up of a manifold with the same centre are iso-
morphic.

Proposition 13. (on gluing modifications). If M =
⋃
Mι is an open cover and

fι : M̄ι → M are modifications such that fMι∩Mk
ι ≈ fMι∩Mk

k , then there exists a
unique (up to isomorphism) modification f : M̄ →M such that fMι ≈ fι.

—————— ∗ ——————

Let L ⊂M be a p-dimensional closed submanifold.

There exists a unique (up to an isomorphism) modification π : M̄ → M in
L such that each point a ∈ L has an open neighbourhood Ua such that πUa is
isomorphic to an elementary blowing-up of Ua with the centre L∩Ua. We will call
it the blowing-up of the manifold M in the submanifold L (the latter is called the
centre of blowing-up).

In fact, the uniqueness follows from Proposition 12 (applied to the cover: M\L
and Ua for a ∈ L). For the existence: for every a ∈ L we take an elementary
blowing-up πa : Ma → Ua of an open neighbourhood Ua of the point a with the
centre L ∩ Ua. By Proposition 12 and Corollary 6 we have πUa∩Uba ≈ πUa∩Ubb (as
blowings-up with the common centre L ∩ Ua ∩ Ub); we take also e = idM\L;
then obviously π

Ua\L
a ≈ eUa\L. By Proposition 13, there exists a modification

π : M̄ →M such that πUa ≈ πa.
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The subset π−1(L) is a closed and smooth hypersurface. (There is: π−1(V ) is
isomorphic to V ×Pq, where V are sufficently small open neighbourhoods of points
in L; moreover πL : π−1(L)→ L is a locally trivial fibration with the fiber Pq−1).
It is called the exceptional set of the blowing-up π.

Proposition 14. If π : M̄ →M is a blowing-up in L and N ⊂M is a submanifold
of dimension s which intersect transversally L, then π−1(N) is a submanifold of
dimension s which intersect transversally π−1(L).

Dowód. Let a ∈ N ∩ L. By Proposition 3 we take a chart φ : U → Ω at a such
that φ(L ∩ U) = {v = 0} ∩ Ω and φ(N ∩ U) = {t = 0} ∩ Ω, where t = (z1, ..., zr),
r = n−s ¬ p; then L∩U = ψ−1(0), where ψ = (φp+1, ..., φn). Shrinking U we may
assume that πU is isomorphic to an elementary blowing-up πf of U , isomorphic
in turn to πψ (Proposition 11) which is isomorphic to πΩ

v (by (#)), that is πU is
isomorphic to πΩ

v over φ

π−1(U) π−1
v (Ω)

U Ω

bihol.

φ

πU πΩ
v

-

-
? ?

Then π−1(L∩U), π−1(N ∩U) correspond to π−1
v ({v = 0}∩Ω), π−1

v ({t = 0}∩Ω)
by the biholomorphism π−1(U)→ π−1

v (Ω). But π−1
v ({v = 0}) = Cp×(0×Pq−1) and

π−1
v ({t = 0}) = {u ∈ Cr : t = 0} × Πq (a submanifold of dimension s), where u =

(z1, ..., zp), intersect transversally in Cp×Πq, so the inverse images π−1(L), π−1(N)
in π−1(U) (the second is a submanifold of dimension s) intersect transversally which
implies that π−1(N) is a submanifold of dimension s and intersect transversally
π−1(L) (because the sets of the form π−1(U) cover π−1(L) ∩ π−1(N)). �

Theorem 1. If Γ ⊂M is a closed curve with Γ∗ finite then there exists a modifi-
cation π : M̄ → M in Γ such that π−1(Γ) is a finite union of smooth, closed and
mutually transversal hypersurfaces in M .

Dowód. Let us take a multiple blowing-up π1 : M1 →M as in Proposition 10 and
the blowing-up π2 : M2 →M1 of the curve Λ. Then π = π1 ◦π2 : M2 →M is a mo-
dification in Γ. Submanifolds N1, ..., Nr ⊂M1 are mutually transversal in M1 and
pairs Ni, Nj (i 6= j) intersect outside Λ. Hence π−1

2 (Ni) ⊂ M2 are smooth hyper-
surfaces (Proposition 14), compact, mutually transversal in M2\π−1

2 (Λ) and pairs
π−1

2 (Ni), π−1
2 (Nj), i 6= j, intersect only outside π−1

2 (Λ); moreover by Proposition
14 each π−1

2 (Ni) intersect transversally π−1(Λ). Then smooth, closed hypersur-
faces π−1

2 (N1), ..., π−1
2 (Nr), π−1

2 (Λ) with the union equal to π−1(Γ) are mutually
transversal in M2. �
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9. Desingularization of a coherent sheaf of ideals on a
2-dimensional manifold

Let M be a 2-dimensional manifold.

A parameter at a point a ∈ M is a germ φ ∈ ma such that daφ 6= 0. We say
φ correspond to a germ of smooth curve A if V (φ) = A; then it is a generator of
I(A) unique up to an invertible factor. We say parameters φ, ψ at a are transversal,
if V (φ), V (ψ) are transversal, which means daφ, daψ are linearly independent, or
equivalently (φ̄, ψ̄) is a chart (a system of coordinates at a) for some representatives
φ̄, ψ̄.

We say a germ f ∈ Oa is of type (NC) if f ∼ φαψβ , where φ, ψ are transversal

parameters at a. (It means that in some chart it has the form azα1 z
β
2 , a(0) 6= 0).

It holds if and only if V (f) = A ∪ B or = A or = ∅, where A,B are germs of
transversal smooth curves. Then, respectively to the above cases, f ∼ φαψβ or
f ∼ φα or f ∼ 1, where φ, ψ are parameters corresponding to A,B.

We say a function f ∈ OM is of type (NC) if its all germs fz, z ∈M are of type
(NC). Then by Proposition 10 we have

Proposition 15. If f ∈ OM and V (f)∗ is finite, then there exists a blowing-up
π : M̄ →M over V (f)∗ such that f ◦ π is of type (NC).

—————— * ——————

By a coherent sheaf of ideals on M we mean a family T of ideals Tz ⊂ Oz,
z ∈ M , such that each point in M has an open neighbourhood U in which T has
a finite set of generators i.e. there exist φ1, ..., φr ∈ OU such that (φ1)z, ..., (φr)z
generate Tz for every z ∈ U (T corresponds to a sheaf according to the standard
definition - obtained by the presheaf: {f ∈ OG : fz ∈ Tz for z ∈ G}G open in M ).
The set of its zeros is defined by V (T ) = {z ∈ M : Tz 6= Oz}; since V (T ) ∩ U =
{φ1 = ... = φr = 0} if φ1, . . . , φr generate T in U , then it is an analytic subset of
the manifold M .

If f : N → M is a holomorphic mapping between manifolds we define the
coherent sheaf f∗T on N (called the inverse image of the sheaf T ) by: (f∗T )ξ ⊂ Oξ
is the ideal generated by Tf(ξ) ◦ fξ that is by φ1 ◦ fξ, ..., φr ◦ fξ, provided φ1, ..., φr
generate Tf(ξ) (so, if ψi generate T in U then ψi ◦ f generate f∗T in f−1(U)). It is
obviously V (f∗T ) = f−1(V (T )). If g : L→ N is a holomorphic mapping between
manifolds then

(f ◦ g)∗T = g∗(f∗T ).

We say a sequence of germs φ1, ..., φr ∈ Oa is of type (NC) if φi ∼ φαiψβi , where
φ, ψ are transversal parameters at a. We say a sequence of functions f1, ..., fr ∈ OM
is of type (NC) if each sequence of germs (f1)z, ..., (fr)z, z ∈ M, is of type (NC).
Notice that if f1, ..., fr ∈ OM then if the sequence (f1)a, ..., (fr)a is of type (NC)
then for an open neighbourhood U of the point a the sequence (f1)U , ..., (fr)U is
of type (NC).
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We say an ideal of the ring Oa is of type (NC*), respectively (NC), if there exists
a sequence of generators of the ideal of type (NC), respectively one generator of
type (NC). We say a sheaf T is of type (NC*), respectively (NC), at a point z ∈M
if Tz is of type (NC*), respectively (NC). At last we say a sheaf T is of type (NC*),
respectively (NC) if it is of type (NC*), respectively (NC), in each point z ∈M .

By σT we will denote the set of points in which T is not of type (NC). Obviously
σT ⊂ V (T ) (in general the inclusion σT ⊂ V (T )∗ does not hold, for example the
point 0 ∈ C2 and the sheaf generated in C2 by z2

1 and z1z2).

Lemma 1. If φ1, ..., φr are holomorphic in an open neighbourhood U of a point
a and (φi)a 6= 0, then after shrinking U there is φi = ψαi11 ...ψαiss for some ψv ∈
O(U) such that V (ψv) are (in U) crosswise to a, separated by a and dzψv 6= 0 for
z ∈ V (ψv)\a.

Dowód. In fact, it suffices to take as ψv representatives, in a sufficiently small
neighbourhood U , of all non-associated, irreducible divisors of the germs (φi)a. �

Hence

(1) The set σT is isolated.

It suffices to take generators φi in U and ψv as above and let z ∈ U\a. If
z ∈ V (T ) then z belongs to a unique V (ψs) and then Tz = Oz(ψs)αz , where α =
min(α1s, ..., αrs).

Proposition 16. If T is a coherent sheaf of ideals in M with σT finite then there
exists a multiple blowing-up π : M̄ →M over σT such that π∗T is of type (NC∗).

Dowód. Let a1, ..., ak be all the points in which T is not of type (NC*) (their
number is finite because they belong to σT ). Using induction with respect to k,
by (3) in Section 7, it suffices to show that there exists a multiple blowing-up
π : M̄ → M over ak such that π−1(a1), ..., π−1(ak−1) are unique points of M̄ in
which π∗T is not of type (NC*). Really, let us take generators φ1, ..., φr of the
sheaf T in an open neighbourhood U of the point ak, and ψ1, ..., ψs ∈ O(U) as
in Lemma 1 (after shrinking U). By Proposition 9 applied to V (ψv) (and by (4)
and (6) in Section 7), there exists a multiple blowing-up π : M̄ → M over ak and
curves L1, ..., Lq ⊂ U smooth, closed and mutually tranversal in U , such that each
V (ψv ◦ π) = π−1(V (ψv)) is the union of some of them. Let c ∈ π−1(U). It suffices
to show that the sequence (ψ1 ◦ π)c, ..., (ψs ◦ π)c is of type (NC). If c 6∈ ∪Li then
V (ψv ◦ π) = ∅, so (ψv ◦ π)c ∼ 1. If c belongs to a unique Li then V (ψv ◦ π) = ∅
or = (Li)c, so (ψv ◦ π)c ∼ φαv , where φ is a parameter corresponding to Lc. If
at last c ∈ Li ∩ Lj , i 6= j, then V (ψv ◦ π) = ∅ or = (Li)c or = (Li)c ∪ (Lj)c, so
(ψv ◦ π)c ∼ φαvψβv , where ψ, φ are parameters corresponding to (Li)c, (Lj)c. �

Let π : M̄ → M be a blowing-up at a. Let σξ be a parameter corresponding to
Sξ for ξ ∈ S.
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Let φ be a parameter at a. The inverse image Γ̄ of a representative of V (φ)
intersects S precisely in one point aφ, and the parameter φ̄ at aφ corresponding to
Γ̄aφ is tranversal to σaφ (see Proposition 4); notice that if parameters φ, ψ at a are
transversal then aφ 6= aψ. It is

φ ◦ πξ ∼
{
σξ for ξ ∈ S\aφ,
φσξ for ξ = aφ.

In fact, it suffices to consider the canonical blowing-up p and φ = (z1)0. Then
φ◦(p◦χ1)u = (z1)u for u ∈ {z1 = 0} and φ◦(p◦χ2)v = (z2w1)v for v ∈ {z2 = 0}, and
aφ = χ2(0) and φ̄ ◦ χ2 = (w1)0 (because χ−1

2 (p−1(V (z1))) = {z2 = 0} ∪ {w1 = 0}).
It implies that if f ∼ φαψβ , where φ, ψ are transversal parameters at a, then,
putting c = aφ, d = aψ,

(#) f ◦ πξ ∼


σα+β
ξ if ξ ∈ S\(aφ, aψ),
φ̄ασα+β

ξ if ξ = aφ,
ψ̄βσα+β

ξ if ξ = aψ.

A pair f, g ∈ Oa of type (NC): f ∼ φαψβ , g ∼ φα′ψβ′ , φ, ψ transversal parame-
ters at a, is called unessential, if (α′ − α)(β′ − β)  0; then f is a divisor of g or g
is a divisor of f . If (α′ − α)(β′ − β) < 0 then we call the pair f, g essential of type
(p, q), where p = min(|α′ − α|, |β′ − β|), q = max(|α′ − α|, |β′ − β|).

(2) Let f, g ∈ Oa be a pair of type (NC). Then

(a) All the pairs Pξ = (f ◦ πξ, g ◦ πξ), ξ ∈ S, are of type (NC).

(b) If the pair f, g is unessential then all the pairs Pξ, ξ ∈ S, are unessential.

(c) If the pair f, g is essential of type (p, p), then all the pairs Pξ, ξ ∈ S, are
unessential.

(d) If the pair f, g is essential of type (p, q), p < q, then there exists c ∈ S
such that all the pairs Pξ, ξ ∈ S\c, are unessential, and the pair Pc is essential of
type (p, q − p) or (q − p, p) depending on whether q  2p or q ¬ 2p.

Dowód. (a) and (b) are obvious by (#). The case (c) follows (by (#)) from the
fact that then α + β = α′ + β′. Let us pass to the proof of (d). We may assume
(changing f and g if necessary) that α+β < α′+β′. If α < α′ then β > β′ and Paφ
is unessential; then p = β− β′, q = α′−α, q− p = (α′+ β′)− (α+ β) and the pair
Paψ is essential of type – as in (d). If α > α′ then β < β′, so Paψ is unessential:
then p = α−α′, q = β′−β, q−p = (α′+β′)− (α+β) and the pair Paφ is essential
of type – as in (d). �

Let f, g ∈ OM be a pair of type (NC). We say it is unessential at a point z ∈M ,
respectively, essential of type (p, q), if the pair of germs fz, gz is such a pair. Let us
notice that each point has a neighbourhood U such that the pair f, g is unessential
at each point z ∈ U\a. From (2) it follows:
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(3) Let f, g ∈ OM be a pair of type (NC). Then the pair f ◦π, g◦π is also of type
(NC). If the pair f, g is unessential in M then the pair f ◦ π, g ◦ π is unessential in
M̄ . Assume that the pair f, g is unessential at all the points of M\a and essential
of type (p, q) at a. If p = q then f ◦ π, g ◦ π is unessential at all the points of M̄ ; if
p < q then there exists c ∈ M̄ such that f ◦ π, g ◦ π is unessential at all the points
M̄\c and essential at c, of type (p, q− p) or (q− p, p) depending on whether q  2p
or q ¬ 2p.

(4) If the pair f, g ∈ OM of type (NC) is unessential at all the points of M\a
then there exists a multiple blowing-up π : M̄ →M over a such that the pair f ◦π,
g ◦ π (also of type (NC) by (3)) is unessential at all the points of M̄ .

In fact, if the pair f, g is essential at a, we may define (by (3)) a sequence
M̄ = Mr

πr→ ...
π1→ M0 = M , where πi : Mi → Mi−1 is the blowing-up at ai−1

(i = 1, ..., r), a0 = a, and ai ∈ π−1
i (ai−1) is the unique point of Mi in which the

pair f ◦ π1 ◦ ... ◦ πi, g ◦ π1 ◦ ... ◦ πi is essential (i = 1, ..., r − 1), and in particular
of type (p, p) if i = r − 1 (because if 0 < p ¬ q and the sequence (pi, qi) ∈ N2 is
defined by (p0, q0) = (p, q) and

(pi, qi) =
{

(pi−1, qi−1 − pi−1), if qi−1  2pi−1,
(qi−1 − pi−1, pi−1), if qi−1 ¬ 2pi−1,

then there must be pr−1 = qr−1 for some r).

Let π : M̄ →M be a multiple blowing-up. From (#) it follows:

(5) If ξ ∈ M̄ and the sequence f1, ..., fr ∈ Oπ(ξ) is of type (NC) then also the
sequence f1 ◦ πξ, ..., fr ◦ πξ ∈ Oξ.

For it suffices to check it for a blowing-up. Hence (taking r = 1):

(6) If T is a coherent sheaf of ideals then σ(π∗T ) ⊂ π−1(σT ). Hence (by (1)), if
σT is finite then also the set σ(π∗T ) is finite.

(For if φ is a generator of type (NC) of the ideal Tπ(ξ) then φ ◦ πξ is a generator
of type (NC) of the ideal (π∗T )ξ).

Theorem 2 (Hironaka Theorem on 2-dimensional manifold). If T is a coherent
sheaf of ideals on M for which σT is finite, then there exists a multiple blowing-up
π : M̄ →M over σT such that π∗T is of type (NC).

Dowód. By Proposition 12 (and by (3) in Section 7 and (6)) we may assume that
T is of type (NC*).

Let us introduce the following definitions: An ideal I ⊂ Oz is of type (n), where
n  1, if I has a sequence at most n generators of type (NC). A sheaf T on M is
of type (n) if σT is finite and each Tz, z ∈ M , is of type (n). Then (by (5) and
(6)) for every multiple blowing-up π : M̄ → M the sheaf π∗T is also of type (n).
A sheaf T of type (n) is of type (n, r), where r  0, if, with exception of r points,
each Tz is of type (n − 1). Each sheaf T of type (n) is (because σT is finite) of
type (n, r) for some r  0. A sheaf of type (n, 0) is of type (n − 1) and a sheaf of
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type (1) is of type (NC). Since T is of some type (n) (because σT is finite) then
it suffices (by (3) in Section 7 and (6)) to prove that if T is of type (n, r), n  2,
r  1, then there exists a multiple blowing-up π : M̄ →M over σT such that π∗T
is of type (n, r − 1).

So, let T be of type (n, r), n  2, r  1. Then there exist points a1, ..., ar ∈ M
such that Tai are of type (n), and for z 6= a1, ..., ar the ideals Tz are of type (n−1).
There exists a sequence f1, ..., fn ∈ OU of type (NC) of generators of T in an open
neighbourhood U of the point ar, and (shrinking U) we may additionally assume
that the pair f1, f2 is unessential at each points of the set U\ar. By (5) (and by
(4) in Section 7) there exists a multiple blowing-up π : M̄ →M over ar such that
the pair f1 ◦ π, f2 ◦ π ∈ Oπ−1(U) is unessential at all the points of the set π−1(U).
Then, if ξ ∈ π−1(U) then in the sequence (fi ◦π)ξ of generators of the ideal (π∗T )ξ
we may omit one of the generators (f1 ◦ π)ξ, (f2 ◦ π)ξ, that is (π∗T )ξ, ξ ∈ π−1(U),
are of type (n − 1). Since for ξ ∈ M̄\π−1(ar) different of π−1(a1), ..., π−1(ar−1),
the ideals (π∗T )ξ are obviously of type (n− 1) then π∗T is of type (n, r − 1). �
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NECESSARY CONDITIONS FOR IRREDUCIBILITY

OF ALGEBROID PLANE CURVES

SZYMON BRZOSTOWSKI

Abstract. Let K be an algebraically closed field of characteristic 0 and let
f ∈ K [[X]] [Y ] be monic. Using the properties of approximate roots given in

[J. Algebra 343 (2011), pp. 143–159] we propose some necessary conditions
for irreducibility of f in K [[X]] [Y ]. The result is expressed only in terms of

intersection multiplicities of f with its approximate roots.

1. Introduction

We recall that for a monic polynomial f ∈ R[Y ] of degree k, where R is a com-
mutative ring with unity, and for a positive integer l|k satisfying gcd(l, charR) = 1,
there exists a unique monic polynomial g ∈ R[Y ] with the property

degY (f − gl) < k − k

l
.

The polynomial g is called an approximate l-th root of f and is denoted by l
√
f (cf.

[Abh77, Definition (4.3)]).

Now, let K be an algebraically closed field of characteristic 0, K[[X]] – the ring
of power series in one variable X with coefficients in K and K ((X)) – its field of
fractions. Let f ∈ K ((X)) [Y ] be a monic and irreducible polynomial. In [Brz11] we
proved an extension of the results of Abhyankar and Moh concerning approximate
roots of f (see [AM73]) to the case of so-called ‘non-characteristic’ approximate
roots of f . The necessary excerpt from [Brz11, Theorem 5] is given in Theorem
1. In the present work, we use this theorem and the properties of characteristic
sequences to give some necessary conditions for the irreducibility of f ∈ K[[X]][Y ]
when charK = 0 (one can think K = C). These conditions are effective in the case

2010 Mathematics Subject Classification. Primary 12E05, Secondary 12E10, 14C17.
Key words and phrases. Approximate root, irreducibility condition, characteristic sequence,

intersection multiplicity.
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of f ∈ K[X,Y ]. Namely, Theorem 4 below can be easily turned into a test algorithm
for reducibility, main point of which is the process of division with remainder (it
serves to compute the intersection multiplicity (cf. [GP13]) and approximate roots
(cf. [Brz11, Remark 1])).

Let us remark that the problem of testing irreducibility has been fully solved
by Abhyankar in [Abh89], but his criterion is more technical than our numeric
conditions as it involves analyzing the form of G-adic expansions of polynomials.
From this criterion one can easily deduce necessary conditions for irreducibility
([Abh90, p. 183], presented in Theorem 2 below) similar in nature to ours (Theorem
4). We show by example (Example 2) that in general our necessary conditions are
stronger than those in Theorem 2.

For an interesting combinatorial criterion of irreducibility see the recent work
[GG10].

2. Characteristic Sequences (cf. [Abh77, § 6])

Let K be an algebraically closed field (for simplicity – of characteristic 0) and
let f ∈ K ((X)) [Y ] be a monic and irreducible polynomial. By Newton Theorem
([Abh77, Theorem (5.19)]), f can be written in the form

(2.1) f(tk, Y ) =
∏

ε∈Uk(K)

(Y − y (εt)) ,

where Uk (K) := {ε ∈ K : εk = 1} and y (t) =
∑
j∈Z

yjt
j ∈ K ((t)). We recall that

the support Suppt y(t) of y(t) is the set of those exponents of the powers of t that
occur with a non-zero coefficient in the Laurent expansion of y(t). Note also that
from the irreducibility of f it follows that gcd({k} ∪ Suppt y(t)) = 1.

The basic characteristic sequences of f . To begin with, we put m0 := k,
d1 := k and m1 := ord t y(t). If, now, y(t) = 0 then putting h := 0 we end
the construction. In the opposite case, let d2 := gcd(m0,m1). Inductively, if
m0, . . . ,mi and d1, . . . , di+1 are already defined for some i > 1, put

mi+1 := inf{j ∈ Suppt y(t) : j 6≡ 0(mod di+1)}.

If, now, mi+1 < +∞, we also define

di+2 := gcd(m0, . . . ,mi+1),

whereas in the case mi+1 = +∞ we put h := i and finish the inductive definition.

Since in the above construction there is always 0 < dj+1 < dj for j > 2, the
process ends after finitely many steps. Thus we end up with two sequences:

m := (m0,m1, . . . ,mh+1)

and

d := (d1, . . . , dh+1).
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We call them, respectively: the characteristic of f and the sequence of character-
istic divisors of f .

Using the sequences m and d we also define the following derived character-
istic sequence of f :

r = (r0, . . . , rh+1),

where r0 := m0, ri := 1
di

(m1 d1 +
∑

26j6i

(mj −mj−1) dj) for 1 6 i 6 h, and

rh+1 := +∞.

Note that the characteristic sequences defined above do not depend on the choice
of a particular y(t) satisfying (2.1).

Immediately from the definitions we get:

Property 1. The sequences m, d, r are integer-valued (or +∞). What is more,
1. h > 1 unless f = Y ,
2. m1 < m2 < . . . < mh+1 = +∞,
3. di+1 = gcd(m0, . . . ,mi) = gcd(di,mi) = gcd(di, ri) = gcd(r0, . . . , ri) for
1 6 i 6 h,
4. 1 = dh+1|dh| . . . |d1 = k and dh+1 < dh < . . . < d2 6 d1,
5. if M ∈ Z ∪ {+∞} and mi−1 < M 6 mi for some i ∈ {2, . . . , h+ 1} (or only
M 6 mi if i = 1), then

gcd({k} ∪ (Suppt y(t) ∩ (−∞,M))) = gcd(m0, . . . ,mi−1) = di,

6. ri di = ri−1 di−1 + (mi −mi−1) di for 2 6 i 6 h,
7. r1 d1 < r2 d2 < . . . < rh+1 dh+1 = +∞.

3. The Preliminary Result

We start with the following (here m, d, r are the characteristic sequences of f
with h+ 1 equal to the length of the divisor sequence d).

Theorem 1. Let K be an algebraically closed field, charK = 0, let f ∈ K ((X)) [Y ]
be of the form (2.1) and let l be a positive divisor of k. Define i := max{1 6 j 6
h+ 1 : l|dj}. Then

(3.1) ord t(
l
√
f(tk, y (t))) = ri

di
l

.

Proof. The case l 6= di is the non-characteristic case stated in [Brz11, Theorem 5,
item 5]; if l = di and l 6= k then 2 6 i, and this is the characteristic case proved in
[Abh77, Theorem (8.2)].

It remains to prove the case of l = k. Now, if k = 1 then l
√
f = f , i = h+ 1 and

rh+1 = ∞, so (3.1) is valid by the very definitions (cf. Section 2). Hence, in the
following we may assume that k > 2. Property 1 implies that in this case

(3.2) i ∈ {1, 2} and d1, . . . , di = k;
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also h > i since k > 2. Let f(tk, Y ) = Y k +v(tk)Y k−1 + ... . From Viète’s formulas
it follows that

v(tk) = −
∑

ε∈Uk(K)

y(εt) = −
∑

ε∈Uk(K)

(
∑
j<mi

(yjε
jtj)+ymiε

mitmi)+ terms of order > mi.

By the definitions of i and the characteristic sequences of f , we have di+1 =
gcd(di,mi) < di = k and also gcd({k} ∪ (Suppt y(t) ∩ (−∞,mi))) = di = k (by
Property 1). Consequently, for a k-th primitive root of unity ε0 ∈ Uk (K),{

εj0 = 1, if j < mi

εj0 6= 1, if j = mi

and so ∑
ε∈Uk(K)

εj =

{
k, if j < mi

0, if j = mi
.

It follows that

v(tk) = −k ·
∑
j<mi

yj t
j + terms of order > mi.

Now, by the definition of an approximate root, one sees easily that l
√
f = k

√
f =

Y + v(t)
k . Thus we have

l
√
f(tk, y (t)) = y(t) +

v(tk)

k
= ymi

tmi + terms of order > mi,

and since ymi
6= 0,

ord t(
l
√
f(tk, y (t))) = mi.

It remains to see that (according to (3.2))

mi =

{
r1, if i = 1
m1d1+(m2−m1)d2

d2
= r2, if i = 2

}
= ri

di
l

.

�

4. Necessary Conditions for Irreducibility

Throughout this section K denotes an algebraically closed field of characteristic
0.

Notation 1. For monic polynomials f, g ∈ K[[X]][Y ] we write I(f, g) to denote
the intersection multiplicity of f and g at 0 = (0, 0), which is, by definition, equal
to the dimension of the K-vector space K[[X,Y ]]/(f, g) (see e.g. [P lo13, Section 3]).

We recall that a monic f ∈ K[[X]][Y ] with f(0) = 0 is called Y -distinguished if
f = Y k + a1(X)Y k−1 + . . .+ ak(X) and a1(0) = . . . = ak(0) = 0.

The simplest test for reducibility is the following well-known

Property 2. If a monic f ∈ K[[X]][Y ], f(0) = 0, is not distinguished, then f is
reducible in K[[X]][Y ].
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Proof. This can be deduced from Hensel’s Lemma. An alternative proof is the
following. Suppose that f is irreducible. It is clear that f is also irreducible in
K ((X)) [Y ]. By Newton Theorem we can assume that f is of the form (2.1). Since
f ∈ K[[X]][Y ] we have y(t) ∈ K[[t]] and since: f(0) = 0, f(tk, 0) = ±

∏
ε∈Uk(K)

y (εt)

— we have y(0) = 0. This means that f is distinguished. �

The above property implies that the only interesting case to deal with is that
of a distinguished polynomial. Hence in the following we will consider only such
polynomials. The starting point for our further considerations is:

Theorem 2 (Abhyankar’s Necessary Conditions for Irreducibility [Abh90,
p. 183]). Let f ∈ K[[X]][Y ] be Y -distinguished of degree k > 2. Put r′0 := d′1 := k,

r′1 := I(f, Y ), d′2 := gcd(d′1, r
′
1) and then r′e := I(f,

de
√
f), d′e+1 := gcd(d′e, r

′
e),

for e = 2, . . . , h′ + 1, where the number h′ > 1 is defined in such a way that
d′h′ > d′h′+1 = d′h′+2 and where (by convention) every integer divides ∞. If either

(A1) d′h′+1 6= 1

or

(A2) the sequence (r′1 d
′
1, . . . , r

′
h′+1 d

′
h′+1) is not strictly increasing,

then the polynomial f is reducible in K[[X]][Y ].

Proof. If f is irreducible, one can use the Abhyankar-Moh result on characteristic
approximate roots (cf. Theorem 1) and Property 1 item 3 to see that in such a
case none of the above conditions hold. Indeed, it is enough to note that the
sequences (d′1, . . . , d

′
h′+1), (r′0, . . . , r

′
h′+1) are in fact the characteristic sequences d,

r (respectively) defined in section 2. �

Theorem 1 of section 3 can be restated as follows.

Theorem 3. Let f ∈ K[[X]][Y ] be Y -distinguished of degree k. Let (l1, . . . , la) be
the strictly decreasing sequence of all the positive divisors of the number k. Define
∆ := {δj : j = 0, . . . , a} where

δj := I(f,
lj
√
f) · lj (j = 1, . . . , a)

and

δ0 := I(f, Y ) · k.

If f is irreducible in K[[X]][Y ] and (m, d, r) denote the characteristic sequences of
f with h+ 1 equal to the length of the divisor sequence d, then

∆ = {re · de : e = 1, . . . , h+ 1}.

Proof. By the same argument as in the proof of Property 2, we can assume that f
is of the form (2.1), where y(t) ∈ K[[t]] and y(0) = 0. Hence (tk, y(t)) is a normal-
ization of the algebroid curve f = 0. By the well-known property of intersection
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multiplicity, for any g ∈ K[[X]][Y ] we have (cf. [Cam80, Chapter 2.3] or [P lo13])

I(f, g) = ord t g(tk, y(t)).

Thus, δ0 = I(f, Y ) · k = ord t y(t) · k = m1k = r1d1. Moreover, from Theorem 1
and the definition of the derived sequence r it follows that

δj = I(f,
lj
√
f) · lj = ord t

lj
√
f(tk, y(t)) · lj ∈ {re · de : e = 1, . . . , h+ 1},

for j = 1, . . . , a. In particular, if lj = de < k we have δj = rede, for e = 2, . . . , h+1;
if lj = d2 = k, we still have δj = r2d2. Consequently, ∆ = {re · de : e = 1, . . . , h+
1}. �

Now we can strengthen Abhyankar’s criterion.

Theorem 4. Let f ∈ K[[X]][Y ] be Y -distinguished of degree k > 2. Define the
sequences d′, r′ as in Theorem 2 and the set ∆ as in Theorem 3. If any of the
conditions (A1), (A2),

(B1) ∆ 6= {r′e d′e : 1 6 e 6 h′ + 1}
or

(B2) there exists j ∈ {1, . . . , a} such that for i := max{1 6 e 6 h′ + 1 : lj |d′e}
it is

δj 6= r′i d
′
i

holds, then f is reducible in K[[X]][Y ].

Proof. As in the proof of Theorem 2, if f is irreducible then the sequences (d′1, . . . ,
d′h′+1), (r′0, . . . , r

′
h′+1) are in fact the characteristic sequences d and r of f . Hence

the condition (B1) is fulfilled by Theorem 3. As for condition (B2), putting i(lj) :=
max{1 6 e 6 h′ + 1 : lj |d′e} for j = 1, . . . , a, thanks to Theorem 1 we get

δj = I(f,
lj
√
f) · lj = r′i(lj)

d′i(lj)

lj
· lj = r′i(lj)d

′
i(lj)

, for j = 1, . . . , a.

This finishes the proof. �

We illustrate Theorem 4 with some examples.

Example 1. Take Kuo’s example considered in [Abh89]:

f := (Y 2 −X3)2 −X7.

We easily compute 4
√
f = Y , 2

√
f = (Y 2 − X3) and, naturally, 1

√
f = f . Hence

(r′1d
′
1, . . . , r

′
h′+1d

′
h′+1) = (6 · 4, 14 · 2). By the condition (A1) of Theorem 2 we

deduce that f is reducible. Now we change f a little:

f := (Y 2 −X3)2 − 4X5Y −X7.

The approximate roots are as before but now (r′1d
′
1, . . . , r

′
h′+1d

′
h′+1) = (6 · 4, 13 ·

2,∞ · 1). Moreover, (δj)
3
j=0 = (24, 24, 26,∞). This easily implies that none of the
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conditions (A1)–(B2) of Theorem 4 is fulfilled and we may suspect (which is indeed
the case) that f is irreducible.

The next example shows that the conditions (B1)–(B2) of Theorem 4 are some-
times stronger than Abhyankar’s conditions (A1)–(A2).

Example 2. Consider f ∈ C[[X]][Y ] of the form

f :=(Y 2 −X)6 − 2X3Y (Y 2 −X)3 − 24X4Y (Y 2 −X)2

+ (−32X5Y +X6)(Y 2 −X) + 64X8Y.

One easily checks that

2
√
f = (Y 2 −X)3 −X3Y

3
√
f = (Y 2 −X)2

4
√
f = Y 3 − 3

2
XY

6
√
f = Y 2 −X

12
√
f = Y

and then δ0 = δ1 = I(f, Y ) · 12 = 6 · 12 = 72, δ2 = I(f, 6
√
f) · 6 = 17 · 6 = 102,

δ3 = I(f, 4
√
f) ·4 = 18 ·4 = 72, δ4 = I(f, 3

√
f) ·3 = 34 ·3 = 102, δ5 = I(f, 2

√
f) ·2 =

40 · 2 = 80, δ6 = I(f, 1
√
f) =∞. Hence ∆ = {72, 80, 102,∞}.

On the other hand, performing the test of Theorem 2, we have (r′e d
′
e)e=1,...,h′+1 =

(6 ·12, 17 ·6,∞·1) = (72, 102,∞) which easily shows that the conditions (A1)–(A2)
are not fulfilled. Hence in this case one cannot decide reducibility of f using the
criterion of Theorem 2. But since ∆ % {r′e d′e : e = 1, . . . , h′ + 1}, the condition
(B1) of Theorem 4 is fulfilled and we may conclude that f is reducible.

Remark. Abhyankar’s criterion (Theorem 2) is valid over any algebraically closed
field K of characteristic charK =: p as long as k 6≡ 0 (mod p). Theorem 4, however,
requires even more assumptions in such generality. Namely, in the notations of
Theorem 4, for every positive divisor l of the number k one has to assume that( d′i+1

l −1
u

)
· 1 6= 0 in K, where i := max{1 6 e 6 h′ + 1 : l|d′e} and u := max{0 6

e 6
d′
i+1

l :
( d′i+1

l
e

)
· 1 6= 0 in K}. This follows from Theorem 11 in [Brz08] which

generalizes Theorem 5 of [Brz11], the main ingredient for the results of the present
paper.
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EUCLIDEAN ALGORITHM AND POLYNOMIAL EQUATIONS

AFTER LABATIE

E.R. GARCÍA BARROSO AND A. P LOSKI

Abstract. We recall Labatie’s effective method of solving polynomial equa-

tions with two unknowns by using the Euclidean algorithm.

Introduction

The French mathematician Labatie1 published in 1835 a booklet on a method of
solving polynomial systems of equations in two unknowns (see [Fin1]). He used the
polynomial division to replace the given system of equations by the collection of
triangular systems. Labatie’s theorem can be found in some old Algebra books: by
Finck [Fin2], Serret [Se] and Netto [Ne], but as far as we know, not in any Algebra
text book written in the twentieth century.

In this paper we recall Labatie’s method following Serret [Se] (pp. 196-206). Then
we give, in a modern setting, an improvement of Labatie’s result due to Bonnet
[Bo].

Let K be a field of arbitrary characteristic. We shall consider polynomials with
coefficients in K. If W = W (x, y) ∈ K[x, y] then we denote by degy W the degree
of W with respect to y. We say that a non-zero polynomial W is y-primitive if it
is a primitive polynomial in the ring K[x][y], that is, if 1 is the greatest common
divisor of all the non-zero coefficients that are dependent on x. If V , W ∈ K[x, y]
satisfy the condition 0 < degy V ≤ degy W then there are polynomials Q (quotient),
R (remainder) in K[x, y] and a non-zero polynomial u = u(x) ∈ K[x] such that
uW = QV + R, where degy R < degy V or R = 0.

2010 Mathematics Subject Classification. Primary 12xxx; Secondary 14H20.
Key words and phrases. Polynomial equations, Euclidean algorithm, intersection multiplicity.
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The greatest common divisor of polynomials V , W may be computed using the
Euclidean algorithm, see [Bô] chapter XVI. Recently Hilmar and Smyth [H-S] gave
a very simple proof of Bézout’s theorem for plane projective curves using as a main
tool the Euclidean division.

1. Euclidean algorithm

Let V1, V2 ∈ K[x, y] be coprime and y-primitive polynomials such that 0 <
degy V2 ≤ degy V1.

Using the polynomial division we get a sequence of y-primitive polynomials V3, . . . ,
Vn+1 of decreasing y-degrees 0 < degy Vn+1 < · · · < degy V3 < degyV2 such that

u1V1 = Q1V2 + v1V3,

u2V2 = Q2V3 + v2V4,

...

un−1Vn−1 = Qn−1Vn + vn−1Vn+1,

unVn = QnVn+1 + vn,

where u1,. . . , un, v1,. . . , vn are non-zero polynomials of the ring K[x]. Let be
Vn+2 = 1 and write the above equalities in the form

(1)i uiVi = QiVi+1 + viVi+2 for i = 1, . . . , n.

In what follows we call n the number of steps performed by the Euclidean algorithm
on input (V1, V2). We will keep the above notation in all this note.

2. Labatie’s elimination

Let us define two sequences d1, . . . , dn and w1, . . . , wn of polynomials in x de-
termined by the sequences u1, . . . , un and v1, . . . , vn in a recurrent way. We let
d1 = gcd(u1, v1), w1 = u1

d1
and di = gcd(wi−1ui, vi), wi = wi−1ui

di
for i ∈ {2, . . . , n}.

It is easy to see that wi = u1···ui

d1···di
in K[x] for all i ∈ {1, . . . , n}.

For any V , W ∈ K[x, y] we let {V = 0,W = 0} = {P ∈ K2 : V (P ) = W (P ) = 0 }.

Theorem 2.1 (Labatie 1835). With notations and assumptions given above we
have

{V1 = 0, V2 = 0} =
n⋃

i=1

{
Vi+1 = 0,

vi
di

= 0

}
.

We present the proof of the above theorem in Section 4.

Labatie’s theorem shows that the system of equations V1(x, y) = 0, V2(x, y) = 0 is
equivalent to the collection of triangular systems
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Vi+1(x, y) = 0,
vi
di

(x) = 0 (i = 1, . . . , n).

Labatie’s theorem fell into oblivion for a longtime. At the beginning of the 1990’s
Lazard in [La] proved that every system of polynomial equations in many unknowns
with a finite number of solutions in the algebraic closure of K is equivalent to the
union of triangular systems, which can be obtained from Gröbner bases. Kalk-
brener in [Kalk1] and [Kalk2] developed the theory of elimination sequences based
on the Euclidean algorithm. His method of computing solutions of systems of poly-
nomials equations turned out to be very efficient if applied to systems of two or
three unknowns (see [Kalk2] and the references given therein for the comparison
with Gröbner basis methods). Neither Lazard nor Kalkbrener mentioned Labatie’s
work. Only Glashof in [Glas] recalled Labatie’s method after Netto [Ne] and com-
pared it with Kalkbrener’s approach to polynomials equations. In what follows
we need the notion of multiplicity of a solution of a system of two equations in
two unknowns. The definition we are going to present is quite sophisticated. The
reader not acquainted with it may assume the five properties of multiplicity given
below as axiomatic definition of this notion.

Let P ∈ K2. We define the local ring of rational functions regular at P to be

K[x, y]P =

{
R

S
: R,S ∈ K[x, y], S(P ) 6= 0

}
.

The ring K[x, y]P is a unique factorization domain. The units of K[x, y]P are
rational functions R

S such that R(P )S(P ) 6= 0.

Let (V,W )P be the ideal generated by polynomials V and W in K[x, y]P . Following
[Ful], we define the intersection multiplicity iP (V,W ) to be the dimension of the
K-vector space K[x, y]P /(V,W )P . We call also iP (V,W ) the multiplicity of the
solution P of the system V = 0, W = 0.

Let us recall the basic properties of the intersection multiplicity which hold for any
field K (not necessarily algebraically closed):

(1) iP (V,W ) < +∞ if and only if P 6∈ {gcd(V,W ) = 0},
(2) iP (V,W ) > 0 if and only if P ∈ {V = W = 0},
(3) iP (V,WW ′) = iP (V,W ) + iP (V,W ′),
(4) iP (V,W ) depends only on the ideal (V,W )P .

Intuitively: iP (V,W ) does not change when we replace the system V = 0,
W = 0 by another one equivalent to it near P .
Moreover, it is easy to check that

(5) if P = (a, b) is a solution of the triangular system W (x, y) = 0, w(x) = 0
then iP (W,w) = (ordaw)(ordbW (a, y)), where ordcp denotes the multi-
plicity of the root c in the polynomial p = p(x) ∈ K[x]. By convention
ordcp = 0 if p(c) 6= 0.
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The following example may be helpful to acquire an intuition of intersection
multiplicity. Let us consider the parabola y2 − x = 0 over the field of
real numbers. Applying Property 5 to the triangular system y2 − x = 0,
x − c = 0 we check that the axis x = 0 intersects the parabola in (0, 0)
with multiplicity 2 but the line x− c = 0, where c > 0 intersects it in two
points (c,

√
c) and (c,−

√
c), each with multiplicity 1. If c → 0+ then the

two points coincide.

x = 0 x− c = 0

•
•

•

Note also that the system of equations y2 − x = 0, x − c = 0 has for c 6= 0 two
complex solutions, which are arbitrary close to the origin for small enough complex
c. This observation leads to the dynamic definition of intersection multiplicity for
algebraic complex curves (see [Te], Section 6).

The following theorem due to Bonnet [Bo] is an improvement of Labatie’s result:

Theorem 2.2 (Bonnet 1847). For any P ∈ K2 we have

iP (V1, V2) =
n∑

i=1

iP

(
Vi+1,

vi
di

)
.

Bonnet, like Labatie, considered polynomials with complex coefficients and used
the definition of the intersection multiplicity in terms of Puiseux series. In Section 5
we present a short proof of Theorem 2.2 based on Labatie’s calculations (Section 3)
and the properties of the intersection multiplicity listed above.

Example 2.3. Let V1 = y5 − x3, V2 = y3 − x4. Using the Euclidean algorithm
we get y5 − x3 = y2(y3 − x4) + x3(xy2 − 1), x(y3 − x4) = y(xy2 − 1) + y − x5

and xy2 − 1 = (xy + x6)(y − x5) + x11 − 1. Hence we have (u1, u2, u3) = (1, x, 1),
(v1, v2, v3) = (x3, 1, x11 − 1) and (d1, d2, d3) = (1, 1, 1). By Labatie’s theorem, we
get

{y5 − x3 = 0, y3 − x4 = 0} =

{y3 − x4 = 0, x3 = 0} ∪ {xy2 − 1 = 0, 1 = 0} ∪ {y − x5 = 0, x11 − 1 = 0}.

Therefore the systems V1 = 0, V2 = 0 has two solutions (0, 0) and (1, 1) in K and
ten solutions in the algebraic closure of K. To compute the multiplicities of the
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solutions we use Bonnet’s theorem:

i0(y5−x3, y3−x4) = i0(y3−x4, x3)+i0(xy2−1, 1)+i0(y−x5, x11−1) = 3·3+0+0 = 9.

The remaining multiplicities are equal to one. Thus the system V1 = 0, V2 = 0 has
9 + 11 = 20 solutions counted with multiplicities.

3. Auxiliary lemmas

Recall that the polynomials wi and vi

di
are coprime.

Lemma 3.1. There exist two sequences of polymomials G0,. . . , Gn and H0,. . . ,
Hn in the ring K[x, y] such that

(2)i wi−1V1 = Gi−1Vi + Gi−2Vi+1
vi−1

di−1
,

(3)i wi−1V2 = Hi−1Vi + Hi−2Vi+1
vi−1

di−1

for i ∈ {2, . . . , n + 1}.

Proof. We proceed by induction on i. Let’s check the first identity. From the
equality u1V1 = Q1V2 + v1V3 it follows that d1 = gcd(u1, v1) divides the product
Q1V2 and consequently the polynomial Q1 since V2 is y-primitive. Letting G0 = 1,
G1 = Q1

d1
we get w1V1 = G1V2+G0V3

v1

d1
that is (2)2. Suppose now that 2 ≤ i < n+1

and that for some polynomials Gi−1 and Gi−2 the identity (2)i holds. Multiplying
the identity (2)i by the polynomial ui we get

wi−1uiV1 = uiGi−1Vi + uiGi−2Vi+1
vi−1

di−1
.

Let us insert to the identity above uiVi = QiVi+1 + viVi+2. After simple computa-
tions we get:

wi−1uiV1 =
(
Gi−1Qi + uiGi−2

vi−1

di−1

)
Vi+1 + Gi−1viVi+2.

Since di = gcd(wi−1ui, vi) and the polynomial Vi+1 is y-primitive we get that

Gi := Gi−1Qi

di
+ Gi−2

uivi−1

didi−1
is a polynomial and we have

wiV1 = GiVi+1 + Gi−1Vi+2
vi
di
,

which is the identity (2)i+1. This proves the first part of the lemma.

To prove the identity (3)i note that

w1V2 = H1V2 + H0V3
v1

d1

if we let H0 = 0 and H1 = u1

d1
. This proves (3)2. To check (3)i we proceed

analogously to the proof of (2)i : it suffices to replace Gi by Hi.
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Remark 3.2. The polynomials Gi are defined by G0 = 1, G1 = Q1

d1
, Gi = Gi−1Qi

di
+

Gi−2uivi−1

di−1di
and the polynomials Hi by H0 = 0, H1 = u1

d1
and Hi = Hi−1Qi

di
+

Hi−2uivi−1

di−1di
.

Lemma 3.3. With the notations of Lemma 3.1 we have the identities

(4)i (−1)i
v1 · · · vi−1

d1 · · · di−1
Vi+1 = Hi−1V1 −Gi−1V2 for i ∈ {2, . . . , n + 1}.

Proof. Let Di = GiHi−1 − Gi−1Hi for i ∈ {2, . . . , n}. Consider the system of
equations (2)i, (3)i as a linear system with unknowns Vi, Vi+1

vi−1

di−1
with determinant

equals Di−1. Using Cramer’s rule we get

Di−1Vi = wi−1 (Hi−2V1 −Gi−2V2) ,

Di−1Vi+1
vi−1

di−1
= −wi−1(Hi−1V1 −Gi−1V2).

Replacing in the first equality i by i + 1 we obtain

(1) DiVi+1 = wi(Hi−1V1 −Gi−1V2).

Multiplying the second equality by ui

di
we get

(2) Di−1Vi+1
vi−1

di−1

ui

di
= −wi(Hi−1V1 −Gi−1V2).

Comparing the left sides of (1) and (2) and cancelling Vi+1 we have Di =
−vi−1ui

di−1di
Di−1. Moreover D1 = G1H0 −G0H1 = −u1

d1
and by induction we have

Di = (−1)iwi
v1 · · · vi−1

d1 · · · di−1

which inserted into formula (1) gives the identity (4)i.

4. Proof of Labatie’s theorem

We can now give the proof of Theorem 2.1: fix a point P ∈ K2. If Vi(P ) =
vi−1

di−1
(P ) = 0 for a value i ∈ {2, . . . , n + 1} then from Lemma 3.1 it follows that

V1(P ) = V2(P ) = 0 given that wi−1(P ) 6= 0 since wi−1, vi−1

di−1
are coprime.

Suppose now that V1(P ) = V2(P ) = 0. From the identity (4)n+1 of Lemma 3.3 we
get v1···vn

d1···dn
(P ) = 0. Therefore at least one of polynomials v1

d1
,. . . , vn

dn
vanishes at P .

If v1

d1
(P ) = 0 then P ∈ {V2 = v1

d1
= 0}.

If the smallest index i for which vi

di
(P ) = 0 is strictly greater than 1 then we get,

by the identity (4)i , that Vi+1(P ) = 0 because v1···vi−1

d1···di−1
(P ) 6= 0 by the definition

of i. This proves the theorem.
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5. Proof of Bonnet’s theorem

Fix a point P ∈ K2. If v1···vn

d1···dn
(P ) 6= 0 then by (4)n+1 we get

(3) 1 ∈ (V1, V2)P

which implies iP (V1, V2) = 0.

On the other hand we have iP

(
Vi+1,

vi

di

)
= 0 since vi

di
(P ) 6= 0 for i ∈ {1, . . . , n}

and the theorem holds in the case under consideration.

Suppose now that v1···vn

d1···dn
(P ) = 0 and let i0 be the smallest index i ∈ {1, . . . , n}

such that
vi0

di0
(P ) = 0. Therefore we have wi0(P ) 6= 0 since

vi0

di0
and wi0 are coprime.

Let us check that

(4) (V1, V2)P =

(
Vi0+1, Vi0+2

vi0
di0

)
P

.

From (2)i0+1 and (3)i0+1 we get

(5) V1, V2 ∈
(
Vi0+1, Vi0+2

vi0
di0

)
P

.

On the other hand, from (4)i0 (if i0 > 1, the case i0 = 1 being obvious), we obtain

(6) Vi0+1 ∈ (V1, V2)P

and from (4)i0+1, we have

(7)
vi0
di0

Vi0+2 ∈ (V1, V2)P .

Combining (5), (6) and (7) we get (4). Equality (4) and the additive property of
intersection multiplicity give

(8) iP (V1, V2) = iP

(
Vi0+1,

vi0
di0

)
+ iP (Vi0+1, Vi0+2).

If i0 = n then (8) reduces to

(9) iP (V1, V2) = iP

(
Vn+1,

vn
dn

)
since Vn+2 = 1.

To prove Theorem 2.2 we shall proceed by induction on the number n of steps
performed by the Euclidean algorithm. For n = 1 the theorem follows from (9)
since n = 1 implies i0 = 1. Let n > 1 and suppose that the theorem holds for
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all pairs of polynomials for which the number of steps performed by the Euclidean
algorithm is strictly less than n.

We assume that i0 < n since for i0 = n the theorem is true by (9).

Let us put V j = Vi0+j , where j ∈ {1, 2, . . . , n − i0 + 2}. The number of steps

performed by the Euclidean algorithm on input (V 1, V 2) is equal to n = n−i0 < n.
We have uj = ui0+j and vj = vi0+j for j ∈ {1, . . . , n}. To relate dj and di0+j we
introduce some notation. We will write u ∼ ũ for polynomials u, ũ associated in the
local ring K[x, y]P . If u, ũ ∈ K[x] then u ∼ ũ if and only if there exist polynomials
r, s ∈ K[x] such that su = rũ and r(P )s(P ) 6= 0. Note that gcd(u, v) ∼ gcd(ũ, v)
if u ∼ ũ. We claim that

(10) dj ∼ di0+j , wj ∼ wi0+j for j ∈ {1, . . . , n}.

Let us check (10) by induction on j.

If j = 1 then d1 = gcd(u1, v1) = gcd(ui0+1, vi0+1) ∼ gcd(wi0ui0+1, vi0+1) = di0+1

since wi0 ∼ 1. Hence we get w1 = u1

d1
=

ui0+1

d1
∼ wi0ui0+1

di0+1
, which proves (10) for

j = 1.

Suppose that (10) holds for a j < n. Then we get

dj+1 = gcd(wjuj+1, vj+1) ∼ gcd(wi0+jui0+j+1, vi0+j+1) = di0+j+1

since wj ∼ wi0+j by the induction assumption, and

wj+1 =
wjuj+1

dj+1

∼ wi0+jui0+j+1

di0+j+1
= wi0+j+1.

This finishes the proof of (10).

Now we can pass to the proof of the theorem. By the inductive assumption applied
to the pair V 1, V 2 we get

iP (Vi0+1, Vi0+2) = iP (V 1, V 2) =
n∑

j=1

iP

(
V j+1,

vj

dj

)

=

n∑
j=1

iP

(
Vi0+j+1,

vi0+j

di0+j

)
=

n∑
i=i0+1

iP

(
Vi+1,

vi
di

)

since dj ∼ di0+j by (10) which together with (8) proves the inductive step and so
the theorem.
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 Lódź University Press 2013, 51 – 55

ON SMOOTH HYPERSURFACES

CONTAINING A GIVEN SUBVARIETY

ZBIGNIEW JELONEK

Abstract. We reprove some results about affine complete intersections.

1. Introduction.

Let k be an algebraically closed field. Let Xn be a smooth affine variety (of
dimension n). Let us recall that a variety H ⊂ X is a hypersurface if the ideal
I(H) ⊂ k[X] is generated by a single polynomial. Let Y r ⊂ Xn be a smooth
subvariety. It was proved in [2] (see also [3]), that if n ≥ 2r + 1 then there is a
smooth complete intersection Z2r ⊂ Xn such that Y r ⊂ Z2r. In general this result
can not be improved- see Example 2.2. We also show how to use results from [6]
to improve the result above in some special cases. In particular we show:

Theorem 1.1. (Greco, Valabrega) Let Xn be a smooth variety and let Y r be a
smooth subvariety of X. Assume that the rth Chow group CHr(Y r) vanishes. If
n ≥ 2r, then there is a smooth complete intersection Z2r−1 ⊂ X such that Y r ⊂
Z2r−1.

and

Theorem 1.2. (Murthy) Let Y r ⊂ An be a smooth subvariety. If n ≥ 2r then
there is a smooth hypersurface H ⊂ An such that Y ⊂ H.

In particular a smooth surface S ⊂ A4 is contained in a smooth hypersurface
H ⊂ A4. Let us note that this is not true in the projective case: it is well known that
a smooth surface S ⊂ P4 is not contained in any smooth hypersurface H ⊂ P4,
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Key words and phrases. Algebraic vector bundle, complete intersection, unimodular row.

The author was partially supported by the grant of Polish Ministry of Science 2010-2013.

51



52 ZBIGNIEW JELONEK

unless it is a complete intersection. Our approach is slightly different than the
original ones.

2. Main Result.

We start with:

Theorem 2.1. Let Y ⊂ X be smooth affine varieties. Then there is a smooth
hypersurface V (f) ⊂ X which contains Y if and only if the normal bundle of Y
contains a one dimensional trivial summand i.e.,

NX/Y = T⊕E1,

where E1 denotes a trivial line bundle.

Proof. Assume that there is a smooth hypersurface H = V (f) ⊂ X which contains
Y. We have

TY ⊂ TH ⊂ TX,
in particular

NX/Y = NH/Z ⊕NX/H |Y .
However, the normal bundle of the smooth hypersurface H = V (f) is trivial (in
fact the class of f is a generator of the conormal bundle of H).

Conversely, assume that

NX/Y = T⊕E1.

Hence also

N∗X/Y = T∗ ⊕E1.

This means that the conormal bundle N∗X/Y has a nowhere vanishing section s ∈
Γ(Y,N∗X/Y ). But Γ(Y,N∗X/Y ) = I(Y )/I(Y )2, where I(Y ) ⊂ k[X] denotes the ideal

of the subvariety Y. Hence s determines a polynomial s ∈ I(X) such that the class
of s is s. Take a point a ∈ Y and local coordinates (u1, ..., un) at a such that Y is
described by local equations u1, ..., ut (t = codimY ) near a. Since u1, ...,ut freely
generate the bundle N∗X/Y near the point a, we have

s =
t∑

i=1

αiui,

where αi ∈ k[Ua] (Ua denotes some open neighborhood of a in Y ). Since the section
s nowhere vanishes, there exists at least one i0 such that αi0 6= 0. Let us compute
the derivative dys of the polynomial s at the point y ∈ Y. We have

s =
t∑

i=1

αiui mod I(Y )2,
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hence there are polynomials fj , hj ∈ I(Y ), j = 1, ...,m, such that

s =
t∑

i=1

αiui +
m∑
j=1

fjhj .

Now we easily see that

das =
t∑

i=1

αidaui.

Since daui, i = 1, ..., n, are linearly independent and not all αi vanish at y we have
dys 6= 0. Hence the hypersurface V (s) is smooth along Y. Let I(Y ) = (g1, ..., gr).
Consider the linear system on X given by the polynomials (s, g21 , ..., g

2
r). The base

locus of this system is exactly the subvariety Y. We can extend the set {g21 , ..., g2r}
adding some polynomials {g2jαi, j = 1, ..., s, i = 0, 1, ..., k} in such a way that a

new system (s, g21 , ..., g
2
r , g

2
jαi) is unramified outside Y. Indeed, let x ∈ X \Y. There

is a polynomial gx ∈ I(Y ), such that gx(x) 6= 0. Let α1, ..., α2k+1 (k = dimX) be
polynomials which gives an embedding of X into k2n+1. In some neighbourhood
Ux of X we still have gx 6= 0. Since X \ Y is quasi-compact we can cover X \ Y
by a finite set Uxi , i ∈ I of such neighbourhoods. Associate with every such Ux

the set Sx := {g2x, g2xα1, ..., g
2
xα2k+1}. It is easy to see, that the system given by

polynomials {s, g21 , ..., g2r} ∪
⋃

i∈I Sxi
is unramified on X \ Y.

Hence by the Bertini Theorem (see [4], Corollary 12 and [5], Theorem 3.1) the
hypersurface V (s+

∑r
i=1 βig

2
i +

∑
βj,sg

2
jαs) for generic βi, βj,s is smooth outside

Y. But for y ∈ Y,

dy(s+

r∑
i=1

βig
2
i +

∑
βj,sg

2
jαs) = dys.

This implies that the hypersurface V (s+
∑r

i=1 βig
2
i +

∑
βj,sg

2
jαs) is also smooth

along Y. Hence we can take f = s+
∑r

i=1 βig
2
i +

∑
βj,sg

2
jαs. �

Let X2n be a smooth variety and Y n be a smooth subvariety of X2n. We show
that in general does not exist a smooth hypersurface H ⊂ X2n, such that Y n ⊂ H.
Indeed we have:

Example 2.2. Let Hd ⊂ Pn+1 be a smooth hypersurface of degree d > n + 2.
Let Y ⊂ H be an affine open subset. By [7] we have CHn(Y ) 6= 0. Take a non-
zero z ∈ CHn(Y ). By Riemann-Roch without denominators and Serre Splitting
Theorem ( Theorem 2.3 below), there exists an algebraic vector bundle F on Y of
rank n such that cn(F) = (n− 1)!z. Since CHn(Y ) has no (n− 1)! torsion (see e.g.
[6]) we have cn(F) 6= 0. Now let X denote the total space of this vector bundle.
Then Y ⊂ X (as the zero-section) and NX/Y

∼= F. Since the top Chern class of F
does not vanish, the bundle F does not have a one dimensional trivial summand.
In particular Y is not contained in any smooth hypersurface in X (see Theorem
2.1).
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In the sequel we need the following ( see [1], p.177, Th. 7.1.8 and [5], Corollary
3.4):

Theorem 2.3. (Serre Splitting Theorem) Let X be a smooth affine variety and
let F be an algebraic vector bundle on X. If rank F > dimX, then F has a one
dimensional trivial summand i.e.,

F = T⊕E1.

Now we are in a position to prove:

Theorem 2.4. Let Xn be a smooth variety and let Y r be a smooth subvariety of
X. If n ≥ 2r + 1 then there is a smooth complete intersection Z2r ⊂ Xn such
that Y r ⊂ Z2r. Assume additionally that the rth Chow group CHr(Y r) vanishes.
If n ≥ 2r, then there is a smooth complete intersection Z2r−1 ⊂ X such that
Y r ⊂ Z2r−1.

Proof. Assume first that s = n− 2r > 0. Since dimY r < rank NX/Y , Theorem 2.3

shows that NX/Y = T⊕E1, where E1 denotes a trivial line bundle. By Theorem
2.1 there exists a smooth hypersurface H = V (f) (where f is a reduced polynomial)
such that Y ⊂ H. Now we can apply the mathematical induction. This completes
the proof of the first part of Theorem 2.4.

For the proof of the second part let us note that the bundle F = N∗Z2r/Y r has

a one dimensional trivial summand as cr(F) = 0, by the Theorem of Murthy (see
[6], Th. 3.8). Now we can finish by applying Theorem 2.1. �

Theorem 2.5. Let Xn, Y r be as above. If n ≥ 2r+1 then there is a smooth hyper-
surface H = V (f) such that Y r ⊂ H. If the rth Chow group CHr(Xn) vanishes,
then it is enough to assume n ≥ 2r.

Proof. It is enough to consider only the last statement. Moreover, we can assume
that n = 2r. Let Y r =

⋃s
i=1 Yi be the decomposition of Y into irreducible compo-

nents. Of course Yi ∩ Yj = ∅ for i 6= j. We show that the bundle F = NX/Y has
a one dimensional trivial summand over every Yi. Indeed, if dim Yi < r then it
follows from the Serre Splitting Theorem. Assume that dimYi = r. Let ι : Yi → X
be the inclusion. By the self-intersection formula we have the following expression
for the top Chern class of the normal bundle of Yi:

cr(F|Yi
) = ι∗ ◦ ι∗[Yi],

where [Yi] ∈ CH0[Yi] = Z is a generator. By our assumption we have cr(F|Yi) = 0.
Now by the Theorem of Murthy, invoked above, the normal bundle NX/Y splits
over Yi in a suitable way. Finally we can use Theorem 2.1. �

The last statement of Theorem 2.5 can be applied to X = An, or more generally
to X = open affine subset of An . In particular we have:

Corollary 2.6. Let Y r ⊂ An be a smooth subvariety. If n ≥ 2r then there is a
smooth hypersurface H ⊂ An such that Y ⊂ H.
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Theorems above suggest that if all (positive) Chow groups of X and Y vanish,
then it is easier to find a smooth hypersurface which contains a given smooth
subvariety Y ⊂ X. However, we show that also in that case there are examples of
smooth subvarieties Y ⊂ X which are not contained in any smooth hypersurface of
X. In our example X will be an open affine subset of A9 and Y be an affine open
subset of A7. In particular Y and X have all positive Chow groups trivial.

Example 2.7. Consider the variety Γ = {(x, y) ∈ k3 × k3 :
∑3

i=1 xiyi = 1}. By
the Raynaud Theorem (see [8] and [9]) the algebraic vector bundle given by the

unimodular row (x1, x2, x3) is not free. Let Λ = {(x, y) ∈ k3 × k3 :
∑3

i=1 xiyi = 0}
be an affine cone and let Y ′ = A6 \ Λ. Hence Y ′ is an affine open subset of A6.
Moreover, the algebraic vector bundle F given by the unimodular row (x1, x2, x3) is
not trivial, because it is not trivial after restriction to Γ. Since every stably trivial
line bundle is trivial and rank F = 2, we see that the vector bundle F does not
split.

Take Y ′′ = Y ′ × k, X = Y ′ × k3 and consider the embedding

φ : Y ′′ 3 ((x, y), t) 7→ ((x, y), x1t, x2t, x3t) ∈ X.
Take Y = φ(Y ′′). By direct computations we see that the normal bundle NX/Y

restricted to the subvariety Y ′ × {0} is equal to

E3/ < (x1, x2, x3) >∼= F

(where Es denotes the trivial bundle of rank s). Since the bundle F does not split,
neither does NX/Y . In particular Y is not contained in any smooth hypersurface

in X. Moreover, X is an open subset of A9 and Y is isomorphic to an open subset
of A7.
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RINGS OF CONSTANTS OF POLYNOMIAL DERIVATIONS

AND p-BASES

PIOTR J ↪EDRZEJEWICZ

Abstract. We present a survey of results concerning p-bases of rings of con-

stants with respect to polynomial derivations in characteristic p > 0. We

discuss characterizations of rings of constants, properties of their generators
and a general characterization of their p-bases. We also focus on some special

cases: one-element p-bases, eigenvector p-bases and when a ring of constants

is a polynomial graded subalgebra.

Introduction

In Section 1 we introduce the notation and definitions concerning derivations,
rings of constants and p-bases. Then we discuss characterizations of rings of con-
stants in Section 2 and we present some basic information on the number of gen-
erators for rings of constants of polynomial derivations in Section 3. For a wider
panorama of contemporary differential algebra we refer to the book of Nowicki
([41]), and for problems connected with locally nilpotent derivations we refer to
the book of Freudenburg ([10]).

Next two sections contain a general characterization of p-bases of rings of con-
stants with respect to polynomial derivations, based on the author’s paper [26].
In Section 4 we present generalizations of Freudenburg’s lemma (Theorems 4.7
and 4.8). The main theorem (Theorem 5.4) and its motivations are presented in
Section 5. In Section 6 (based on the results of [23] and [18]) we discuss analogies
and differences between single generators of rings of constants in zero and posi-
tive characteristic, and we focus on some special cases. Section 7, based on [24],
is devoted to specific properties of eigenvector p-bases (Theorem 7.2). Finally, in
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Section 8 (based on the paper [28], joint with Nowicki) we describe rings of con-
stants of homogeneous polynomial derivations in positive characteristic, which are
polynomial algebras.

1. Basic definitions and notation

Throughout this article, by a ring we mean a commutative ring with unity, and
by a domain we mean a commutative ring with unity, without zero divisors. If K is
a ring, then by K[x1, . . . , xn] we denote a polynomial K-algebra. If R is a domain,
then by R0 we denote its field of fractions.

Let A be a domain. By A∗ we denote the set of all invertible elements of A. We
call two elements a, b ∈ A associated and denote it by a ∼ b, if a = bc for some
c ∈ A∗. An element a ∈ A is called square-free if b2 - a for every b ∈ A \A∗.

Let A be a domain of characteristic p > 0. Then

Ap = {ap; a ∈ A}
is a subring of A. Let B a subring of A, containing Ap. An element a ∈ A is called
B-free if b - a for every b ∈ B \ A∗. If A = k[x1, . . . , xn] is a polynomial algebra
over a field k of characteristic p > 0, then k[xp1, . . . , x

p
n]-free elements are called

shortly p-free.

If A is a domain of characteristic p > 0 and B is a subring of A, containing Ap,
then for elements f1, . . . , fm ∈ A we define the following subring of A:

CB(f1, . . . , fm) = B0(f1, . . . , fm) ∩A = B0[f1, . . . , fm] ∩A.
Note that the equality B0(f1, . . . , fm) = B0[f1, . . . , fm] can easily be proved di-
rectly, but it also follows from the fact that the field extension B0 ⊂ B0(f1, . . . , fm)
is algebraic.

Let A be a ring. An additive map d : A→ A satisfying the Leibniz rule

d(fg) = d(f)g + fd(g)

for f, g ∈ A, is called a derivation of A. The set

Ad = {f ∈ A : d(f) = 0}
is called the ring of constants of d; it is a subring of A. Moreover, if A is a field,
then Ad is a subfield of A.

If A is a K-algebra, where K is a ring, then a K-linear derivation d : A → A
is called a K-derivation. In this case Ad is a K-subalgebra of A. When K is a
subring of A, d is a K-derivation if and only if K ⊂ Ad.

If d is a K-derivation of a polynomial algebra K[x1, . . . , xn], where K is a ring,
then

d(f) =
∂f

∂x1
d(x1) + . . .+

∂f

∂xn
d(xn)
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for every f ∈ K[x1, . . . , xn].

On the other hand, for arbitrary polynomials g1, . . . , gn ∈ K[x1, . . . , xn] there
exists exactly one K-derivation d of K[x1, . . . , xn] such that

d(x1) = g1
...

d(xn) = gn

and this derivation is of the form

d = g1
∂

∂x1
+ . . .+ gn

∂

∂xn
.

Let A be a domain. Then every derivation d : A→ A can be uniquely extended
to a derivation δ : A0 → A0, which is defined by the formula

δ

(
f

g

)
=
d(f)g − fd(g)

g2

for f, g ∈ A, g 6= 0. If A is a K-domain (that is, a K-algebra and a domain), where
K is a domain, and d is a K-derivation, then δ is a K0-derivation.

If A is a domain of characteristic p > 0 and d : A → A is a derivation, then
d(ap) = 0 for every a ∈ A, so Ap ⊂ Ad. If A is also a K-algebra, where K is a
domain of characteristic p > 0, and d is a K-derivation, then KAp ⊂ Ad, so d is a
KAp-derivation. For example, if A is a polynomial K-algebra: A = K[x1, . . . , xn],
where charK = p > 0, then Ap = Kp[xp1, . . . , x

p
n] and KAp = K[xp1, . . . , x

p
n].

Lemma 1.1. Let K be a domain of characteristic p > 0, consider a polynomial
f ∈ K[x1, . . . , xn]. Then f ∈ K[xp1, . . . , x

p
n] if and only if ∂f

∂xi
= 0 for i = 1, . . . , n.

Recall the definition of a p-basis. We restrict our interests to finite p-bases, see
[35], 38.A, p. 269, for a definition of a p-basis of arbitrary cardinality.

Definition 1.2. Let R be a domain of characteristic p > 0 and B a subring of R,
containing Rp. Let f1, . . . , fm ∈ R.

a) The elements f1, . . . , fm are called p-independent over B if the elements of the
form fα1

1 . . . fαmm , where α1, . . . , αm ∈ {0, . . . , p− 1}, are linearly independent over
B.

b) We say that the elements f1, . . . , fm form a p-basis of R over B if R is a free
B-module with a basis of the form

fα1
1 . . . fαmm ,

where α1, . . . , αm ∈ {0, . . . , p− 1}.
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Note that the elements f1, . . . , fm form a p-basis of R over B if and only if they
are p-independent over B and generate R as a B-algebra. If the elements f1, . . . , fm
form a p-basis of R over B, then every element f ∈ R can be presented in the form

f =
∑

06α1,...,αm<p

aαf
α1
1 . . . fαmm ,

where aα ∈ B, and this presentation is unique.

The notion of a p-basis is a specific positive characteristic analog of a transcen-
dental basis. It fits into the same abstract notion of dependency, see [52], II.12,
p. 97 and II.17, p. 129.

Example 1.3. The elements x1, . . . , xn form:

a) a p-basis of K[x1, . . . , xn] over K[xp1, . . . , x
p
n],

b) a p-basis of k(x1, . . . , xn) over k(xp1, . . . , x
p
n),

c) a p-basis of K[[x1, . . . , xn]] over K[[xp1, . . . , x
p
n]],

where K is a domain, k is a field, charK = char k = p > 0.

Theorem 1.4. ([15], p. 180)
If M is a subfield of a field L of characteristic p > 0, such that Lp ⊂M , then there
exists a p-basis (possibly infinite) of L over M .

Various conditions for existence of p-bases of ring extensions have been studied
for a long time (see, for example, [46] and its references).

Given polynomials f1, . . . , fm ∈ K[x1, . . . , xn], whereK is a ring, and j1, . . . , jm ∈
{1, . . . , n}, by jacf1,...,fmj1,...,jm

we denote the Jacobian determinant of f1, . . . , fm with

respect to xj1 , . . . , xjm . If m = n, then the Jacobian determinant of f1, . . . , fn with
respect to x1, . . . , xn we denote by jac(f1, . . . , fn).

It is convenient to introduce the following notion of a differential gcd of polyno-
mials f1, . . . , fm ∈ K[x1, . . . , xn], where K is a UFD:

dgcd(f1, . . . , fm) = gcd
(

jacf1,...,fmj1,...,jm
, j1, . . . , jm ∈ {1, . . . , n}

)
.

We put dgcd(f1, . . . , fm) = 0 if jacf1,...,fmj1,...,jm
= 0 for every j1, . . . , jm.

Note that dgcd(f1, . . . , fm) is defined up to a factor from K∗. We have

dgcd(f) ∼ gcd

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
for a single polynomial f ∈ K[x1, . . . , xn] and

dgcd(f1, . . . , fn) ∼ jac(f1, . . . , fn)

for n polynomials f1, . . . , fn ∈ K[x1, . . . , xn].
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From a generalized Laplace expansion we obtain the following ([26], Lemma 3.2).

Lemma 1.5. Consider arbitrary pairwise different numbers i1, . . . , ir belonging to
{1, . . . ,m}, where 1 6 r 6 m.

a) If dgcd(fi1 , . . . , fir ) 6= 0, then dgcd(fi1 , . . . , fir ) | dgcd(f1, . . . , fm).

b) If dgcd(fi1 , . . . , fir ) = 0, then dgcd(f1, . . . , fm) = 0.

Recall the following known positive characteristic analog of the well known cri-
terion of algebraic dependence in characteristic zero.

Lemma 1.6. Let K be a domain of characteristic p > 0. Polynomials f1, . . . , fm ∈
K[x1, . . . , xn] are p-dependent over K[xp1, . . . , x

p
n] if and only if jacf1,...,fmj1,...,jm

= 0 for

every j1, . . . , jm ∈ {1, . . . , n}.

2. Characterizations of rings of constants

Recall some characterizations of fields of constants with respect to derivations
of fields. The case of characteristic zero was considered by Suzuki in [49] (Theorem
1) under the assumption of finite transcendence degree and genralized by Nowicki
in [42], Theorem 4.2 (see also [41], Theorem 3.3.2).

Theorem 2.1. (Suzuki, Nowicki)
Let K ⊂ L be an extension of fields of characteristic 0. A subfield M ⊂ L such
that K ⊂M , is a field of constants of some K-derivation of L if and only if M is
algebraically closed in L.

Similarly, in the positive characteristic case, Baer considered extensions of finite
degree (see [15], IV.7, p. 185). Gerstenhaber proved the theorem in the general
case in [12] (Remark at the end of Section 1) and, explicitly, in [13], Lemma 2.

Theorem 2.2. (Baer, Gerstenhaber)
Let K ⊂ L be an extension of fields of characteristic p > 0 satisfying the condition
Lp ⊂ K. Then every subfield M ⊂ L such that K ⊂ M , is a field of constants of
some K-derivation of L.

A characterization of rings of constants with respect to derivations of domains
was obtained by Nowicki in [42], Theorem 5.4 (see also [41], Theorem 4.1.4).

Theorem 2.3. (Nowicki)
Let A be a finitely generated k-domain, where k is a field of characteristic zero. Let
R be a k-subalgebra of A. The following conditions are equivalent:

(1) R is the ring of constants of some k-derivation of A,

(2) R is integrally closed in A and R0 ∩A = R.
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The author observed in [16] and, more generally, in [19], that analogous charac-
terization (without the condition that R is integrally closed) holds in the positive
characteristic case.

Theorem 2.4. ([16], Theorem 1.1, [19], Theorem 2.5)
Let A be a finitely generated K-domain, where K is a domain of characteristic
p > 0. Let R be a subring of A. The following conditions are equivalent:

(1) R is the ring of constants of some K-derivation of A,

(2) KAp ⊂ R and R0 ∩A = R.

The implications (1)⇒ (2) in Theorems 2.3 and 2.4 hold without the assumption
A is finitely generated, and there are counter-examples to the reverse implications
([17], see Example 2.7 below).

Daigle noted ([5], 1.4) that the two conditions in (2) in Theorem 2.3 can be
replaced by one condition of algebraic closedness (in the ring sense). The author
observed in [22] that we can apply this condition to the positive characteristic case
if we modify it to separable algebraic closedness. We call R separably algebraically
closed in A, if each element of A, separably algebraic over R, belongs to R ([22],
Definition 2.1).

Theorem 2.5. ([22], Theorem 3.1)
Let A be a finitely generated K-domain, where K is a domain (of arbitrary charac-
teristic). Let R be a K-subalgebra of A. If charK = p > 0, we assume additionally
that Ap ⊂ R and we put B = KAp. The following conditions are equivalent:

(1) R is the ring of constants of some K-derivation of A,

(2) R is separably algebraically closed in A,

(3) R is a maximal element in one of the following families of rings:{
Φm = {R : K ⊂ R ⊂ A, tr degK R 6 m} if charA = 0,

Ψm = {R : B ⊂ R ⊂ A, (R0 : B0) 6 pm} if charA = p > 0,

where m = 0, 1, 2, . . .

Now, let A be a domain of characteristic p > 0 and let B be a subring of A,
containing Ap. Consider arbitrary elements f1, . . . , fm ∈ A. Recall a notation

CB(f1, . . . , fm) = B0(f1, . . . , fm) ∩A = B0[f1, . . . , fm] ∩A.

If A is finitely generated as a B-algebra, then CB(f1, . . . , fm) is the smallest (with
respect to inclusion) ring of constants of a B-derivation containing the elements
f1, . . . , fm. Under this assumption, the elements f1, . . . , fm form a p-basis (over
B) of the ring of constants of some B-derivation if and only if f1, . . . , fm are p-
independent over B and CB(f1, . . . , fm) = B[f1, . . . , fm].
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Remark that the notion of the ring Ck(f), for a polynomial f over a field k of
characteristic 0, was introduced by Nowicki in [40].

Let k be a field of characteristic p > 0. Note that, if f 6∈ k[xp, yp], then f is a
one-element p-basis of k[xp, yp, f ].

Example 2.6. Let d be a k-derivation of k[x, y] such that{
d(x) = x

d(y) = −y.

Then the polynomial xy is a (one-element) p-basis of k[x, y]d:

k[x, y]d = CB(xy) = k[xp, yp, xy],

where B = k[xp, yp].

The following example from [24] (Example 4.3), motivated by Examples 6, 7
from [17], shows that in Theorem 2.4 the assumption that A is finitely generated
is necessary.

Example 2.7. Let k be a field of characteristic p > 0, let A = k[x0, x1, x2, . . . ] be a
polynomial k-algebra, put B = k[xp0, x

p
1, x

p
2, . . . ]. For i = 1, 2, . . . put fi = xrii − x0,

where ri > 1 and p - ri. Consider the ring

CB(f1, f2, f3, . . . ) = B0(f1, f2, f3, . . . ) ∩A.
Then:

a) the polynomials f1, f2, f3, . . . form a p-basis of CB(f1, f2, f3, . . . ) over B,

b) CB(f1, f2, f3, . . . ) is not a ring of constants of any B-derivation of A.

3. Generators of rings of constants

The case of characteristic zero. Let k be a field of characteristic 0.

Recall the following theorem of Zariski ([51]).

Theorem 3.1. (Zariski)
Let L be a subfield of k(x1, . . . , xn) containing k. If tr degk L 6 2, then the ring

L ∩ k[x1, . . . , xn]

is finitely generated over k.

Nowicki and Nagata in [43] (Theorem 2.6) applied Zariski’s theorem to rings of
constants of derivations.

Theorem 3.2. (Nowicki, Nagata)
Let d be a k-derivation of k[x1, . . . , xn]. If n 6 3, then k[x1, . . . , xn]d is finitely
generated over k.
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The following example was obtained by Kuroda in [30] and [31] (see [10], 7.6,
p. 175). This example is very important in the context of Hilbert’s Fourteenth
Problem. It solved the Problem for ordinary derivations, while for locally nilpotent
derivations the case of n = 4 remains open (we refer to [10] for details).

Example 3.3. (Kuroda)
Let d be a k-derivation of k[x, y, z, t] such that

d(x) = x(4x4 − y4 − z4)

d(y) = y(4y4 − x4 − z4)

d(z) = z(4z4 − x4 − y4)

d(t) = −20x3y3z3.

Then k[x, y, z, t]d is not a finitely generated k-algebra.

Nowicki and Strelcyn in [44] constructed examples of k-derivations with arbitrary
finite (minimal) number of generators of rings of constants.

Example 3.4. (Nowicki, Strelcyn)
Let n > 3 and r > 0. Then r is the minimal number of generators of k[x1, . . . , xn]d

as a k-algebra, for the following k-derivation d.

a) Let r < n. Consider a k-derivation d such that d(xi) = 0 if i 6 r and d(xi) = xi
if i > r. Then

k[x1, . . . , xn]d = k[x1, . . . , xr].

b) Let r > n. Consider a k-derivation d such that
d(x1) = x1

d(x2) = x2

d(x3) = (n− r − 2)x3

d(xi) = 0 for i > 3.

Then
k[x1, . . . , xn]d = k[f0, f1, . . . , fr−n+2, x4, . . . , xn],

where fj = xj1x
r−n+2−j
2 x3 for j = 0, . . . , r − n+ 2.

Now, recall the following theorem of Zaks ([50]).

Theorem 3.5. (Zaks)
If R is a Dedekind subring of k[x1, . . . , xn] containing k, then R = k[f ] for some
f ∈ k[x1, . . . , xn].

Using Zaks’ theorem, Nowicki and Nagata proved ([43], Theorem 2.8, [41], The-
orem 7.1.4, Corollary 7.1.5) the following.

Theorem 3.6. (Nowicki, Nagata)
If d is a k-derivation of k[x1, . . . , xn], such that tr degk k[x1, . . . , xn]d 6 1, then
k[x1, . . . , xn]d = k[f ] for some f ∈ k[x1, . . . , xn].
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Corollary 3.7. If d is a nonzero k-derivation of k[x, y], then k[x, y]d = k[f ] for
some f ∈ k[x, y].

Note also in this context Miyanishi’s theorem ([36], see [10], Theorem 5.1,
p. 108).

Theorem 3.8. (Miyanishi)
If d is a nonzero locally nilpotent k-derivation of k[x, y, z], then k[x, y, z]d = k[f, g]
for some algebraically independent f, g ∈ k[x, y, z].

The case of positive characteristic. Now, let k be a field of characteristic p > 0.

Recall the results of Nowicki and Nagata ([43], Proposition 4.1, Proposition 4.2).

Theorem 3.9. (Nowicki, Nagata)
If d is a k-derivation of k[x1, . . . , xn], then k[x1, . . . , xn]d is finitely generated as a
k[xp1, . . . , x

p
n]-algebra.

Theorem 3.10. (Nowicki, Nagata)
If char k = 2 and d is a nonzero k-derivation of k[x, y], then there exists a polyno-
mial f ∈ k[x, y] such that k[x, y]d = k[x2, y2, f ].

Nowicki and Nagata proved that, if p > 2, the ring of constants of the Euler’s
derivation in k[x, y] is not of the form k[xp, yp, f ] for any polynomial f ∈ k[x, y]
([43], Example 4.3). Li in [34] proved that in this case p−1 is the minimal number
of generators of k[x, y]d as a k[xp, yp]-algebra.

Example 3.11. Let d be a k-derivation of k[x, y] such that{
d(x) = x

d(y) = y.

Then, for B = k[xp, yp] we have:

k[x, y]d = CB(xp−1y) = k[xp, xp−1y, . . . , xyp−1, yp].

Li in [33] (Theorem) obtained the following generalization of Theorem 3.10 for
arbitrary characteristic p > 0.

Theorem 3.12. (Li)
Let d be a nonzero k-derivation of k[x, y]. Then:

a) k[x, y]d is a free k[xp, yp]-module of rank p or 1,

b) there exist g1, . . . , gp−1 ∈ k[x, y] such that k[x, y]d = k[xp, yp, g1, . . . , gp−1].

Note also that Nowicki and Nagata gave an example of a derivation, which ring
of constants is not a free module ([43], Example 4.6).

Example 3.13. Let n > 3 and let d be a k-derivation of k[x1, . . . , xn] such that
d(xi) = xpi for i = 1, . . . , n. Then k[x1, . . . , xn]d is not a free k[xp1, . . . , x

p
n]-module.
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4. Freudenburg’s lemma

The key preparatory fact for the main characterization of p-bases of rings of
constants with respect to polynomial derivations (Theorem 5.4) is a positive char-
acteristic generalization of the following lemma, obtained by Freudenburg in [9].

Lemma 4.1. (Freudenburg)
Given a polynomial f ∈ C[x, y], suppose g ∈ C[x, y] is an irreducible non-constant

divisor of both ∂f
∂x and ∂f

∂y . Then there exists c ∈ C such that g divides f + c.

This lemma was generalized by van den Essen, Nowicki and Tyc in [8], Propo-
sition 2.1.

Proposition 4.2. (van den Essen, Nowicki, Tyc)
Let k be an algebraically closed field of characteristic zero. Let Q be a prime ideal in
k[x1, . . . , xn] and f ∈ k[x1, . . . , xn]. If for each i the partial derivative ∂f

∂xi
belongs

to Q, then there exists c ∈ k such that f − c ∈ Q.

The following example from [8], Remark 2.4, shows that the condition that k is
algebraically closed can not be dropped in the above theorem. We can, however,
make a positive conclusion, as in point b).

Example 4.3. Consider polynomials f = x3 + 3x, g = x2 + 1 ∈ R[x]. Then g is
irreducible, g | f ′ and:

a) g - f − c for any c ∈ R,

b) g | f2 + 4, where w(x) = x2 + 4 is irreducible.

Note the following generalization of the Freudenburg’s lemma for a UFD of
arbitrary characteristic.

Proposition 4.4. ([21], Theorem 3.1)
Let K be a UFD, let Q be a prime ideal of K[x1, . . . , xn]. Consider a polynomial

f ∈ K[x1, . . . , xn] such that ∂f
∂xi
∈ Q for i = 1, . . . , n.

a) If charK = 0, then there exists an irreducible polynomial w(x) ∈ K[x] such that
w(f) ∈ Q.

b) If charK = p > 0, then there exist b, c ∈ K[xp1, . . . , x
p
n] such that gcd(b, c) ∼ 1,

b 6∈ Q and bf + c ∈ Q.

Now, let K be a UFD of characteristic p > 0.

Lemma 4.5. Let f ∈ K[x1, . . . , xn] and let g ∈ K[x1, . . . , xn] be an irreducible

polynomial. If g | f and g | ∂f∂xi for every i, then g2 | f or g ∈ K[xp1, . . . , x
p
n].

In the case of a principal ideal in positive characteristic we obtain from Propo-
sition 4.4 the following equivalence.
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Corollary 4.6. Consider a polynomial f ∈ K[x1, . . . , xn] and an irreducible poly-
nomial g ∈ K[x1, . . . , xn]. The following conditions are equivalent:

(1) g | ∂f∂xi for i = 1, . . . , n,

(2) there exist b, c ∈ K[xp1, . . . , x
p
n] such that g - b, gcd(b, c) ∼ 1 and{

g2 | bf + c if g 6∈ K[xp1, . . . , x
p
n],

g | bf + c if g ∈ K[xp1, . . . , x
p
n].

Now we are going to present generalizations of Freudenburg’s lemma for an
arbitrary number of polynomials instead of one. Theorem 4.7 is a generalization
of Proposition 4.4 b), and Theorem 4.8 is a generalization of Corollary 4.6.

Theorem 4.7. ([26], Proposition 3.5)
Let A = K[x1, . . . , xn] be a polynomial K-algebra, where K is a UFD of charac-
teristic p > 0. Put B = K[xp1, . . . , x

p
n]. Let f1, . . . , fm ∈ A, m > 1, and let Q be

a prime ideal of A. If jacf1,...,fmj1,...,jm
∈ Q for every j1, . . . , jm ∈ {1, . . . , n}, then there

exist i ∈ {1, . . . ,m} and

b, c ∈ B[f1, . . . , f̂i, . . . , fm],

b 6∈ Q, such that bfi + c ∈ Q.

Proof. (Sketch.)
Consider the factor algebra A = A/Q and denote f = f +Q for an element f ∈ A,
and by T the canonical homomorphic image in A of a subring T ⊂ A.

If jacf1,...,fmj1,...,jm
∈ Q for every j1, . . . , jm ∈ {1, . . . , n}, then the rank of the matrix

∂f1/∂x1 ∂f1/∂x2 · · · ∂f1/∂xn

∂f2/∂x1 ∂f2/∂x2 · · · ∂f2/∂xn
...

...
...

∂fm/∂x1 ∂fm/∂x2 · · · ∂fm/∂xn


over the field (A)0 is less than m. From the linear dependence of the rows of this
matrix we infer that:

(∗) there exist s1, . . . , sm ∈ A, where si 6∈ Q for some i ∈ {1, . . . ,m}, such that
s1d(f1) + . . .+ smd(fm) ∈ Q for every K-derivation d of A.

Now, denote Ri = B[f1, . . . , f̂i, . . . , fm]. For every Ri-derivation δ of A there

exists a K-derivation d of A such that δ(f) = d(f) for every f ∈ A ([21], Lemma
3.2). Then, by (∗), d(fi) ∈ Q, so δ(fi) = 0. Hence, fi belongs to (Ri)0 ∩ A – the
smallest ring of constants of any Ri-derivation of A, so there exist b, c ∈ Ri such
that b 6= 0 and fi = − c

b
. �
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Theorem 4.8. ([26], Theorem 3.6)
Let K be a UFD of characteristic p > 0. Let A = K[x1, . . . , xn], put B =
K[xp1, . . . , x

p
n]. Consider arbitrary polynomials f1, . . . , fm ∈ A, where m > 1, and

denote

Ri = B[f1, . . . , f̂i, . . . , fm]

for i = 1, . . . ,m, and, if m > 1,

Rij = B[f1, . . . , f̂i, . . . , f̂j , . . . , fm]

for i, j = 1, . . . ,m, such that i 6= j.

Then dgcd(f1, . . . , fm) is divisible by an irreducible polynomial g ∈ A if and only
if at least one of the following conditions holds:

(i) g 6∈ B and g2 | bfi + c for some i ∈ {1, . . . ,m} and b, c ∈ Ri such that g - b,

(ii) g ∈ B and g | bfi + c for some i ∈ {1, . . . ,m} and b, c ∈ Ri such that g - b,

(iii) g | b1fi + c1 and g | b2fj + c2 for some i, j ∈ {1, . . . ,m}, i 6= j, and
b1, b2, c1, c2 ∈ Rij such that g - b1 and g - b2.

Proof. (Sketch.)
(⇒) If dgcd(f1, . . . , fm) is divisible by an irreducible polynomial g ∈ A, then

jacf1,...,fmj1,...,jm
∈ (g) for every j1, . . . , jm ∈ {1, . . . , n}. Hence, by Theorem 4.7, bfi+c =

gh for some i ∈ {1, . . . ,m}, b, c ∈ Ri such that g - b, and h ∈ A.

The condition (i) holds if g 6∈ B and g | h, and the condition (ii) holds if g ∈ B,
so we assume that g 6∈ B and g - h. Applying, for arbitrary j1, . . . , jm ∈ {1, . . . , n},
the Jacobian derivation di defined by

di(f) = jac
f1,...,fi−1,f,fi+1,...,fm
j1,...,jm

,

we infer that g | jac
f1,...,fi−1,g,fi+1,...,fm
j1,...,jm

. Then the condition (∗) from the proof

of Theorem 4.7 holds for polynomials f1, . . . , fi−1, g, fi+1, . . . , fm, where (one can
show that) g - sj for some j 6= i, so since g = 0, we obtain that fj ∈ (Rij)0. Recall

that fi ∈ (Ri)0, but Ri = Rij [fj ], so fi ∈ (Rij)0, and then (iii) holds.

(⇐) If bfi+c = g2h for some irreducible polynomial g ∈ A\B, some h ∈ A and
b, c ∈ Ri such that g - b, then we apply the derivation di defined above, and obtain

that g | jacf1,...,fmj1,...,jm
for arbitrary j1, . . . , jm ∈ {1, . . . , n}, so g | dgcd(f1, . . . , fm).

We proceed similarly, if (ii) holds.

If g | b1fi + c1 and g | b2fj + c2 for some irreducible polynomial g, i 6= j and
b1, b2, c1, c2 ∈ Rij such that g - b1 and g - b2, then g | dgcd(b1fi + c1, b2fj + c2), so

g | dgcd(f1, . . . , b1fi + c1, . . . , b2fj + c2, . . . , fm)

by Lemma 1.5. Then we show that

dgcd(f1, . . . , b1fi + c1, . . . , b2fj + c2, . . . , fm)
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= b1b2 dgcd(f1, . . . , fi, . . . , fj , . . . , fm)

and obtain the conclusion: g | dgcd(f1, . . . , fm). �

Let us remark that the zero characteristic analog of Theorem 4.8 for m = n
([25], Theorem 4.1) is connected with a characterization of Keller maps and an
equivalent formulation of the Jacobian Conjecture.

5. A characterization of p-bases of rings of constants

A characterization of p-bases of the whole polynomial algebra k[x1, . . . , xn] was
obtained by Nousiainen in [39], see Niitsuma, [37] or [38].

Theorem 5.1. (Nousiainen)
Given polynomials f1, . . . , fn ∈ k[x1, . . . , xn], where k is a field of characteristic
p > 0, the following conditions are equivalent:

(1) there exist k-derivations d1, . . . , dn of k[x1, . . . , xn] such that di(fj) = δij (the
Kronecker delta) for i, j = 1, . . . , n,

(2) there exist k-derivations d1, . . . , dn of k[x1, . . . , xn] such that det(di(fj)) ∈
k \ {0},

(3) the Jacobian matrix

[
∂fi
∂xj

]
is invertible,

(4) k[x1, . . . , xn] = k[xp1, . . . , x
p
n, f1, . . . , fn],

(5) the polynomials f1, . . . , fn form a p-basis of k[x1, . . . , xn] over k[xp1, . . . , x
p
n].

Note that Lang and Mandal obtained in [32], Theorem 2.2, some other equivalent
conditions in terms of Jacobian derivations.

Nousiainen’s theorem is connected with the positive characteristic version of the
Jacobian Conjecture formulated by Adjamagbo ([1], see [7], 10.3.16, p. 261).

Conjecture 5.2. Let f1, . . . , fn ∈ Fp[x1, . . . , xn]. If jac(f1, . . . , fn) ∈ Fp \ {0} and
p does not divide the degree of the field extension Fp(f1, . . . , fn) ⊂ Fp(x1, . . . , xn),
then Fp[f1, . . . , fn] = Fp[x1, . . . , xn].

Theorem 5.3. (Adjamagbo, [1], see [7], 10.3.17, p. 261)
If the above conjecture is true for all n > 1 and all primes p, then the Jacobian
Conjecture is true.

Now we present a general theorem about p-bases of rings of constants of poly-
nomial derivations. In the case m = n it extends the Nousiainen’s theorem with
the condition (3) below.
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Theorem 5.4. ([26], Theorem 4.4)
Let K be a UFD of characteristic p > 0, let f1, . . . , fm ∈ K[x1, . . . , xn], where

m ∈ {1, . . . , n}. Denote: B = K[xp1, . . . , x
p
n], Ri = B[f1, . . . , f̂i, . . . , fm] for i =

1, . . . ,m, and Rij = B[f1, . . . , f̂i, . . . , f̂j , . . . , fm] for i, j = 1, . . . ,m, such that i 6=
j.

The following conditions are equivalent:

(1) dgcd(f1, . . . , fm) ∼ 1,

(2) the polynomials f1, . . . , fm form a p-basis of the ring of constants of some
K-derivation,

(3) the polynomial bfi + c is square-free and B-free for every i ∈ {1, . . . ,m} and
b, c ∈ Ri such that gcd(b, c) ∼ 1, and, if m > 1, then
gcd(b1fi+c1, b2fj+c2) ∼ 1 for every i, j ∈ {1, . . . ,m}, i 6= j, and b1, b2, c1, c2 ∈ Rij
such that gcd(b1, c1) ∼ 1 and gcd(b2, c2) ∼ 1.

Proof. (Sketch.)
(1) ⇒ (2) Assume that dgcd(f1, . . . , fm) ∼ 1. By Lemma 1.6, f1, . . . , fm are
p-independent over B. We will show that for every b ∈ B \ {0} and aα ∈ B,
0 6 α1, . . . , αm < p, the following holds:

(∗) if b |
∑

06α1,...,αm<p
aαf

α1
1 . . . fαmm , then b | aα for every α1, . . . , αm ∈ {0, . . . , p−

1}.

Denote by s the maximal sum α1+. . .+αm such that aα 6= 0. If s = 0, (∗) holds.
Assume that s > 0 and (∗) holds for s − 1. Let b |

∑
06α1,...,αm<p

aαf
α1
1 . . . fαmm .

Applying, for each i, the Jacobian derivation di defined by

di(f) = jac
f1,...,fi−1,f,fi+1,...,fm
j1,...,jm

,

we obtain that b |
∑

06α1,...,αm<p
αiaαf

α1
1 . . . fαi−1i . . . fαmm jacf1,...,fmj1,...,jm

. Then

b |
∑

06α1,...,αm<p

αiaαf
α1
1 . . . fαi−1i . . . fαmm ,

because gcd
(

jacf1,...,fmj1,...,jm
, j1, . . . , jm ∈ {1, . . . , n}

)
∼ 1, and it is enough to use the

induction hypotheses.

Now, observe that any element of the ring

CB(f1, . . . , fm) = B0[f1, . . . , fm] ∩A

is the form
∑

06α1,...,αm<p
aα
b f

α1
1 . . . fαmm , where b ∈ B \ {0}, aα ∈ B, so, by (∗), it

belongs to B[f1, . . . , fm].

(2)⇒ (3) Assume that f1, . . . , fm form a p-basis of the ring R = CB(f1, . . . , fm).
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If g2 | bfi + c for some i ∈ {1, . . . ,m}, b, c ∈ Ri such that gcd(b, c) ∼ 1, and a
noninvertible polynomial g, then one can show that the polynomial 1

gp · (bf + c)p−1

belongs to R and does not belong to B[f1, . . . , fm].

If g | bfi + c for some i ∈ {1, . . . ,m}, b, c ∈ Ri such that gcd(b, c) ∼ 1, and a

noninvertible polynomial g ∈ B, then bf+c
g ∈ R \B[f1, . . . , fm].

If g | b1fi+c1 and g | b2fj+c2 for some i, j ∈ {1, . . . ,m}, i 6= j, b1, b2, c1, c2 ∈ Rij
such that gcd(b1, c1) ∼ 1, gcd(b2, c2) ∼ 1 and a noninvertible polynomial g, then
1
gp · (b1fi + c1)p−1(b2fj + c2) ∈ R \B[f1, . . . , fm].

¬(1) ⇒ ¬(3) If g | dgcd(f1, . . . , fm) for irreducible polynomial g, then at least
one of the conditions (i), (ii), (iii) of Theorem 4.8 holds. Now, if bfi+c is divisible
by g or by g2, it is enough to take h – a product of g and all (if any) irreducible
factors of b, which do not divide c, and then bfi + c + hp remains being divisible
by g, resp. by g2, but gcd(b, c+ hp) ∼ 1. �

6. Closed polynomials and one-element p-bases

The properties of single generators of rings of constants were studied by many
authors.

Theorem 6.1. (Nowicki, Nagata, Ayad, Arzhantsev, Petravchuk)
Let k be a field, let f ∈ k[x1, . . . , xn] \ k. Denote by k the algebraic closure of k.
Consider the following conditions:

(1) k[f ] is the ring of constants of some k-derivation of k[x1, . . . , xn],

(2) k[f ] is integrally closed in k[x1, . . . , xn],

(3) k[f ] is a maximal element (with respect to inclusion) of the family {k[g]; g ∈
k[x1, . . . , xn]},

(4) for some c ∈ k the polynomial f + c is irreducible over k,

(5) for all but finitely many c ∈ k the polynomial f + c is irreducible over k.

a) If char k = 0, then the conditions (1) – (5) are equivalent.

b) If k is a perfect field, then the conditions (2) – (5) are equivalent.

c) For arbitrary field the conditions (2) and (3) are equivalent.

Nowicki and Nagata proved the equivalence of the conditions (1), (2) and (3)
in characteristic zero ([40], Theorem 2.1; [41], Proposition 5.2.1; [43], Lemma 3.1).
Ayad added the condition (4) in char k = 0 ([3], Théorème 8, Remarque), based on
the theorem of P loski ([47], see [48], 3.3, Corollary 1, p. 220), and observed that the
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equivalence (2) ⇔ (3) holds also for char k = p > 0. Arhzantsev and Petravchuk
([2], Theorem 1) considered the case of a perfect field and added the condition (5).

Note also that Nowicki and Nagata in [40] and [43] defined a closed polynomial
in characteristic zero as a polynomial f satisfying the condition (3) above.

Now, let k be a field of characteristic p > 0.

Consider the following families of subrings of k[x1, . . . , xn]:

A = {k[g]; g ∈ k[x1, . . . , xn]},

B = {k[xp1, . . . , x
p
n, g]; g ∈ k[x1, . . . , xn]},

C = {R ⊂ k[x1, . . . , xn] : k[xp1, . . . , x
p
n] ⊂ R, (R0 : k(xp1, . . . , x

p
n)) = p},

where (L : K) denotes the degree of a field extension K ⊂ L.

The family A plays its role in characteristic zero, the family B is a natural
positive characteristic analog, since rings of constants are k[xp1, . . . , x

p
n]-algebras.

The family C, however, has the property that its maximal elements are rings of
constants (see Theorem 2.5).

Note that we do not have any implication, in general, between the maximality of
respective rings in A and in B ([23], Examples 2.1, 2.2), and even the maximality
in C does not imply, in general, the maximality in A. Moreover, the maximality in
B does not imply, in general, the maximality in C ([23], Example 2.3). The only
implication is that if an element of B is maximal in C, then it is also maximal in B.

Example 6.2. a) Put f1 = xp1x2. Then the ring k[f1] is maximal in A, and the
ring k[xp1, . . . , x

p
n, f1] is not maximal in B.

b) Put f2 = x1 + xp1. Then the ring k[xp1, . . . , x
p
n, f2] is maximal in B and in C,

and the ring k[f2] is not maximal in A.

c) Put f3 = xp−11 x2. Then the ring k[xp1, . . . , x
p
n, f3] is maximal in B, and is not

maximal in C.

Now we are going to analyze a characterization of single generators of rings
of constants. In order to understand better the condition (3) in Theorem 6.4
below, observe the following positive characteristic analog of a known property of
polynomials. Recall that k denotes a field of characteristic p > 0.

Lemma 6.3. Consider a polynomial f ∈ k[x1, . . . , xn] \ k[xp1, . . . , x
p
n]. Then

gcd

(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
∼ 1

if and only if f is square-free and p-free.

From Theorem 5.4 in the case of m = 1 we have the following.
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Theorem 6.4. ([21], Theorem 4.2)
Let f ∈ k[x1, . . . , xn] \ k[xp1, . . . , x

p
n]. The following conditions are equivalent:

(1) gcd
(
∂f
∂x1

, . . . , ∂f∂xn

)
∼ 1,

(2) k[xp1, . . . , x
p
n, f ] is the ring of constants of a k-derivation,

(3) for every b, c ∈ k[xp1, . . . , x
p
n] such that gcd(b, c) ∼ 1, the polynomial bf + c is

square-free and p-free.

It is easy to see that

gcd

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
| d(f)

for every k-derivation d of k[x1, . . . , xn] and a polynomial f ∈ k[x1, . . . , xn] \
k[xp1, . . . , x

p
n]. If d(f) = cf for some c ∈ k \ {0}, then

gcd

(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
∼ gcd

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

Hence, we obtain the following fact.

Corollary 6.5. Let f ∈ k[x1, . . . , xn] \ k[xp1, . . . , x
p
n]. Assume that d(f) = cf for

some c ∈ k \ {0}. Then k[xp1, . . . , x
p
n, f ] is a ring of constants of a k-derivation if

and only if the polynomial f is square-free and p-free.

Finally, observe a list of monomial derivations in two variables with one-element
p-bases of rings of constants. The motivation was connected with the paper of
Okuda ([45]), who adapted van den Essen’s algorithm ([6], see [7], 1.4, p. 37) to
positive characteristic. Recall that k denotes a field of characteristic p > 0.

Example 6.6. ([18], Example 13)
Let m, n, r, s be nonnegative integers, m,n 6≡ −1 (mod p), and let α, β ∈ k \ {0}.
Consider the following examples:{
d1(x) = αxrp

d1(y) = βysp,
k[x, y]d1 = k[xp, yp, βxysp − αxrpy],

{
d2(x) = αx

d2(y) = −αy, k[x, y]d2 = k[xp, yp, xy],

{
d3(x) = αyn

d3(y) = βxm,
k[x, y]d3 = k[xp, yp, (n+ 1)βxm+1 − (m+ 1)αyn+1],

{
d4(x) = αxrpyn

d4(y) = β,
k[x, y]d4 = k[xp, yp, (n+ 1)βx− αxrpyn+1],
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{
d5(x) = 0

d5(y) = β,
k[x, y]d5 = k[xp, yp, x],

{
d6(x) = α

d6(y) = βxmysp,
k[x, y]d6 = k[xp, yp, βxm+1ysp − (m+ 1)αy],

{
d7(x) = α

d7(y) = 0,
k[x, y]d7 = k[xp, yp, y].

Theorem 6.7. ([18], Theorem 16)
Let d be a monomial k-derivation of k[x, y]:{

d(x) = αxtyu

d(y) = βxvyw,

where α, β ∈ k. Then

k[x, y]d = k[xp, yp, f ]

for some f ∈ k[x, y] \ k[xp, yp] if and only if d = xjyl · di, where j, l > 0, i ∈
{1, 2, . . . , 7}, and the derivation di is as in Example 6.6.

7. Eigenvector p-bases

Recall the Moore’s determinant (see, for example, [14], Corollary 1.3.7, p. 8).

Lemma 7.1. Let k be a field of characteristic p > 0, let c1, . . . , cm ∈ k, m > 1.
Then ∣∣∣∣∣∣∣∣∣∣

c1 cp1 · · · c
pm−1

1

c2 cp2 · · · c
pm−1

2
...

...
...

cm cpm · · · cp
m−1

m

∣∣∣∣∣∣∣∣∣∣
=

m∏
i=1

∏
α1,...,αi−1∈Fp

(α1c1 + . . .+ αi−1ci−1 + ci).

Recall also a notation

dgcd(f1, . . . , fm) = gcd
(

jacf1,...,fmj1,...,jm
, j1, . . . , jm ∈ {1, . . . , n}

)
.

The following theorem, taking into consideration Theorem 5.4, is motivated by
Corollary 6.5.

Theorem 7.2. ([24], Theorem 3.2)
Let k be a field of characteristic p > 0, consider polynomials f1, . . . , fm ∈ k[x1, . . . ,
xn] \ {0}, where m > 1. Assume that f1, . . . , fm are eigenvectors of some k-
derivation of k[x1, . . . , xn] and their eigenvalues are linearly independent over the
prime subfield Fp. Then f1, . . . , fm are p-independent over k[xp1, . . . , x

p
n], and the

following conditions are equivalent:

(1) k[xp1, . . . , x
p
n, f1, . . . , fm] is the ring of constants of some k-derivation,
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(2) f1, . . . , fm are pairwise coprime, square-free and p-free,

(3) dgcd(f1, . . . , fm) ∼ 1,

(4) dgcd(fi1 , fi2) ∼ 1 for every i1 6= i2.

Proof. (Sketch.)
Let ∆ be a k-derivation such that ∆(fi) = cifi, where ci ∈ k for i = 1, . . . ,m, and

c1, . . . , cm are linearly independent over Fp. Consider k-derivations dj = ∆pj−1

,
j = 1, . . . ,m.

Consider the matrix

M =


d1(f1) d2(f1) · · · dm(f1)

d1(f2) d2(f2) · · · dm(f2)
...

...
...

d1(fm) d2(fm) · · · dm(fm)

 .

We have dj(fi) = cp
j−1

i fi for i, j ∈ {1, . . . ,m}, so detM = cf1 . . . fm, where c is
the value of the Moore’s determinant from Lemma 7.1, c ∈ k. Since c1, . . . , cm are
linearly independent over Fp, we have c 6= 0 and detM 6= 0.

On the other hand, one can show that

detM =
∑

j1,...,jm∈{1,...,n}

d1(xj1) . . . dm(xjm) jacf1,...,fmj1,...,jm
,

so f1, . . . , fm are p-independent over k[xp1, . . . , x
p
n] by Lemma 1.6. Moreover, we

obtain that

dgcd(f1, . . . , fm) | f1 . . . fm.

¬(3) ⇒ ¬(2) Assume that dgcd(f1, . . . , fm) is divisible by an irreducible poly-
nomial g ∈ k[x1, . . . , xn]. Then g | fi for some i.

Now we change in the matrix M the derivation dm to d′m = ∂
∂xl

, where l ∈
{1, . . . , n}, and expand its determinant with respect to the last column. Again,
using Lemma 7.1, we obtain the divisibility

dgcd(f1, . . . , fm) |
m∑
j=1

(−1)m+jcjf1 . . . fj−1
∂fj
∂xl

fj+1 . . . fm,

where cj ∈ k \ {0}. Hence, g | f1 . . . fi−1 ∂fi∂xl
fi+1 . . . fm, so g | fj for some j 6= i or

g | ∂fi∂xl
for l = 1, . . . , n, and then, by Lemma 4.5, g2 | fi or g ∈ k[xp1, . . . , x

p
n].

(4)⇒ (2) For every i1 6= i2, if dgcd(fi1 , fi2) ∼ 1, then fi1 and fi2 are coprime,
square-free and p-free by the implication (1)⇒ (3) of Theorem 5.4 (for m = 2).



76 PIOTR J ↪EDRZEJEWICZ

The implications (1) ⇒ (2) and (3) ⇒ (1) follow directly from Theorem 5.4.
The implication (3)⇒ (4) follows from Lemma 1.5. �

8. Rings of constants of homogeneous derivations

The motivation to describe rings of constants of homogeneous derivations being
polynomial algebras, comes from the following theorem.

Theorem 8.1. (Ganong, Daigle)
Let k be a field of characteristic p > 0, let A and R be polynomial k-algebras in two
variables such that Ap $ R $ A. Then there exist x, y ∈ A such that A = k[x, y]
and R = k[x, yp].

The above theorem was proved by Ganong in [11], in the case of algebraically
closed field k and then by Daigle in [4] in the general case. Note also that Kimura
and Niitsuma in [29] proved that, in the case of a perfect field k of characteristic
p > 0, under these assumptions, A has a p-basis over R and R has a p-basis over
Ap.

Nowicki and the author generalized the above theorem to n variables in the
homogeneous case.

Theorem 8.2. ([28], Theorem 3.1, [27], Theorem 2.2)
Let p be a prime number. Let k be a field (of arbitrary characteristic) and let
f1, . . . , fn ∈ k[x1, . . . , xn] be homogeneous polynomials such that

k[xp1, . . . , x
p
n] ⊂ k[f1, . . . , fn].

a) If char k 6= p, then

k[f1, . . . , fn] = k[xl11 , . . . , x
ln
n ]

for some l1, . . . , ln ∈ {1, p}.

b) If char k = p, then

k[f1, . . . , fn] = k[y1, . . . , ym, y
p
m+1, . . . , y

p
n]

for some m ∈ {0, 1, . . . , n} and some k-linear basis y1, . . . , yn of 〈x1, . . . , xn〉.

For proofs, we refer to two articles joint with Nowicki. The article [27] contains
the proof of the above theorem. The article [28] contains a theorem about (polyno-
mial graded) subalgebras containing k[xp11 , . . . , x

pn
n ], where p1, . . . , pn are arbitrary

prime numbers ([28], Theorem 2.1).

A k-derivation d of k[x1, . . . , xn] is called homogeneous of degree r if d(xi),
if nonzero, is a homogeneous polynomial of degree r + 1 for i = 1, . . . , n. In
this case, for every homogeneous polynomial f ∈ k[x1, . . . , xn] of degree s, the
polynomial d(f), if nonzero, is homogeneous of degree r+s. The ring of constants of
a homogeneous derivation is a graded subalgebra. As a consequence of Theorem 8.2
we obtain.
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Theorem 8.3. ([28], Theorem 4.1)
Let d be a homogeneous k-derivation of k[x1, . . . , xn], where k is a field of charac-
teristic p > 0. Then k[x1, . . . , xn]d is a polynomial k-algebra if and only if

(∗) k[x1, . . . , xn]d = k[y1, . . . , ym, y
p
m+1, . . . , y

p
n]

for some m ∈ {0, 1, . . . , n} and some k-linear basis y1, . . . , yn of 〈x1, . . . , xn〉.

A homogeneous k-derivation of k[x1, . . . , xn] of degree 0 is called linear. In this
case a restriction of d to 〈x1, . . . , xn〉 is a k-linear endomorphism. The author
obtained in [20], Theorem 3.2, a description of linear derivations with rings of
constants of the form (∗) above. Finally, we have the following.

Theorem 8.4. ([28], Corollary 4.2)
Let d be a linear derivation of k[x1, . . . , xn], where k is a field of characteristic
p > 0. Then k[x1, . . . , xn]d is a polynomial k-algebra if and only if the Jordan
matrix of the endomorphism d|〈x1,...,xn〉 has one of the following forms:

ρ1 0
. . .

0 ρn

 ,


[
ρ1 1

0 ρ1

]
0

ρ2
. . .

0 ρn−1

 ,


ρ1 1 0

0 ρ1 1

0 0 ρ1

 0

ρ2
. . .

0 ρn−2


︸ ︷︷ ︸

only p = 2

,

where nonzero ρi are linearly independent over the prime subfield Fp.
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Verlag, Basel, 2000.

[8] A. van den Essen, A. Nowicki, A. Tyc, Generalizations of a lemma of Freudenburg, J.
Pure Appl. Algebra 177 (2003), 43–47.

[9] G. Freudenburg, A note on the kernel of a locally nilpotent derivation, Proc. Amer.
Math. Soc. 124 (1996), 27–29.

[10] G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of
Mathematical Sciences 136, Springer Verlag, Berlin, 2006.

[11] R. Ganong, Plane Frobenius sandwiches, Proc. Amer. Math. Soc. 84 (1982), 474–478.
[12] M. Gerstenhaber, On the Galois theory of inseparable extensions, Bull. Amer. Math.

Soc. 70 (1964), 561–566.
[13] M. Gerstenhaber, On infinite inseparable extensions of exponent one, Bull. Amer.

Math. Soc. 71 (1965), 878–881.
[14] D. Goss, Basic structures of function field arithmetic, Springer, Berlin, 1996.
[15] N. Jacobson, Lectures in abstract algebra, vol. III, D. Van Nostrand, Princeton, 1964.
[16] P. J ↪edrzejewicz, Rings of constants of p-homogeneous polynomial derivations, Comm.

Algebra 31 (2003), 5501–5511.
[17] P. J ↪edrzejewicz, A note on characterizations of rings of constants with respect to

derivations, Colloq. Math. 99 (2004), 51–53.
[18] P. J ↪edrzejewicz, On rings of constants of derivations in two variables in positive

characteristic, Colloq. Math. 106 (2006), 109–117.
[19] P. J ↪edrzejewicz, Eigenvector p-bases of rings of constants of derivations, Comm. Al-

gebra 36 (2008), 1500–1508.
[20] P. J ↪edrzejewicz, Linear derivations with rings of constants generated by linear forms,

Colloq. Math. 113 (2008), 279–286.
[21] P. J ↪edrzejewicz, A characterization of one-element p-bases of rings of constants, Bull.

Pol. Acad. Sci. Math. 59 (2011), 19–26.
[22] P. J ↪edrzejewicz, A note on rings of constants of derivations in integral domains,

Colloq. Math. 122 (2011), 241–245.
[23] P. J ↪edrzejewicz, Positive characteristic analogs of closed polynomials, Cent. Eur. J.

Math. 9 (2011), 50–56.
[24] P. J ↪edrzejewicz, Jacobian conditions for p-bases, Comm. Algebra 40 (2012), 2841–

2852.
[25] P. J ↪edrzejewicz, A characterization of Keller maps, J. Pure Appl. Algebra 217 (2013),

165–171.
[26] P. J ↪edrzejewicz, A characterization of p-bases of rings of constants, Cent. Eur. J.

Math. 11 (2013), 900–909.
[27] P. J ↪edrzejewicz, A. Nowicki, Subalgebras of polynomial algebras containing prime

powers of variables, in: Materia ly na XXXII Konferencj ↪e Szkoleniow ↪a z Geometrii
Analitycznej i Algebraicznej Zespolonej,  Lódź, 2011, 11–21.
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ON COMBINATORIAL CRITERIA
FOR ISOLATED SINGULARITIES

GRZEGORZ OLEKSIK

Abstract. In this article we review combinatorial characterizations of iso-
lated singularities. As a new result in two and three-dimensional case we give
sufficient and necessary conditions for a nondegenerate singularity to be iso-
lated in terms of its support. We also prove new sufficient conditions in the
multidimensional case.

1. Introduction

Let f : (Cn, 0) → (C, 0) be the germ of a holomorphic function. One of the
problems in the theory of singularities is to check effectively that f is an isolated
singularity. Many authors give different conditions to deal with this problem. For
instance by the local Nullstellensatz f is an isolated singularity if and only if the
Milnor number µ(f) is finite. Similarly the Łojasiewicz exponent £0(f) is finite
if and only if f is an isolated singularity. In this paper we review combinatorial
conditions related to the support of an isolated singularity and give some new
results in the nondegenerate class (for definitions see Preliminaries).

Kouchnirenko in [Ko77] gave for a set M ⊂ Nn a necessary and sufficient condi-
tions that there exists an isolated singularity f with supp f ⊂ M (see Thm. 3.9).
Other authors: Wall ([Wa96]), Orlik and Randell ([OR76]), Shcherbak ([Sh79]) ob-
tained similar results. In Remark 3.11 we comment on the history of these results.

The quasihomogeneous case was considered by the authors named above as well
as by Saito ([Sa71], [Sa87]), Krezuer and Skarke ([KS92]), Hertling and Kurbel
([HK12]). In this class of singularities we recall the necessary condition for the

2010 Mathematics Subject Classification. Primary 32S05, Secondary 14B05.
Key words and phrases. Isolated singularity, nondegenerate singularity, Kuchnirenko

condition.
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weights so that the singularity is isolated, which turns out sufficient in the two and
three-dimensional case (see Thm. 4.2).

In section 5 we examine the problem in the class of nondegenerate singularities
and give some new results. For dimension n ≤ 3 we prove necessary and sufficient
conditions for the support of a nondegenerate singularity so that the singularity is
isolated (see Thm 5.4). It seems that for n ≥ 4 Theorem 5.4 is also true (see Conj.
5.5). For higher dimensions we give only sufficient conditions (see Thm. 5.6). Wall
considered another type of nondegeneracy than the Kouchnirenko nondegeneracy.
He got similar results to the ones obtained in Section 5 (see Lem. 1.2 and Thm.
1.4 in [Wa98]).

In the last section using Remark 1.13 (ii) in [Ko76] we reformulate the results of
the previous section in terms of the Newton number (see Cor. 6.2, Prop. 6.3, 6.4).

2. Preliminaries

Let f : (Cn, 0) −→ (C, 0) be a nonzero holomorphic function in an open neigh-
borhood of 0 ∈ Cn. We say that f is a singularity if f(0) = 0, ∇f(0) = 0, where
∇f = (f ′z1 , . . . , f

′
zn). We say that f is an isolated singularity if f is a singularity,

which has an isolated critical point in the origin i.e. additionally ∇f(z) 6= 0 for
z 6= 0 near 0. We note N = {0, 1, 2, . . .}. Let

∑
ν∈Nn aνz

ν be the Taylor expansion
of f at 0. We define the set supp f = {ν ∈ Nn : aν 6= 0} and call it the support of f.
Let w1, . . . , wn, d be positive integer numbers. The polynomial f ∈ C[z1, . . . , zn] is
called quasihomogeneous with weight system (w1, . . . , wn, d) if

n∑
i=1

νiwi = d for any ν ∈ supp f.

We define
Γ+(f) = conv{ν + Rn+ : ν ∈ supp f} ⊂ Rn

and call it the Newton diagram of f . Let u ∈ Rn+ \ {0}. Put

l(u,Γ+(f)) = inf{〈u, v〉 : v ∈ Γ+(f)},
∆(u,Γ+(f)) = {v ∈ Γ+(f) : 〈u, v〉 = l(u,Γ+(f))}.

We say that S ⊂ Rn is a face of Γ+(f) if S = ∆(u,Γ+(f)) for some u ∈ Rn+ \ {0}.
The vector u is called the primitive vector of S. It is easy to see that S is a closed
and convex set and S ⊂ Fr(Γ+(f)), where Fr(A) denotes the boundary of A. One
can prove that a face S ⊂ Γ+(f) is compact if and only if all coordinates of its
primitive vector u are positive. We call the family of all compact faces of Γ+(f)
the Newton boundary of f and denote by Γ(f). We denote by Γk(f) the set of
all compact k-dimensional faces of Γ(f), k = 0, . . . , n − 1. For every compact face
S ∈ Γ(f) we define quasihomogeneous polynomial fS =

∑
ν∈S aνz

ν . We say that
f is nondegenerate on the face S ∈ Γ(f) if the system of equations

∂fS
∂z1

= . . . =
∂fS
∂zn

= 0



ON COMBINATORIAL CRITERIA FOR ISOLATED SINGULARITIES 83

has no solution in (C∗)n, where C∗ = C \ {0}. We say that f is nondegenerate in
the sense of Kouchnirenko (shortly nondegenerate ) if it is nondegenerate on each
face of Γ(f). We say that f is convenient if Γ+(f) has nonempty intersection with
every coordinate axis. We say that f is nearly convenient if the distance of Γ+(f)
to every coordinate axis does not exceed 1. Denote by On the local ring of germs
of holomorphic functions in n-variables at 0 ∈ Cn. Let us recall that the Milnor
Number µ(f) and the Newton number ν(f) are defined as

µ(f) = dimOn/(f ′z1 , . . . , f
′
zn), ν(f) = n!Vn − (n− 1)!Vn−1 + . . .+ (−1)nV0,

where Vi denotes the sum of i-dimensional volumes of the intersection of the cone
spanned by Γ+(f) with the coordinate subspace of dimension i.

3. Generic case

In this section we recall some known results dealing with support of isolated
singularities. Kouchnirenko in [Ko77, Thm 1] gave for a setM ⊂ Nn necessary and
sufficient conditions so that there exists an isolated singularity f with supp f ⊂M.
Moreover, every singularity f with supp f ⊂M and generic coefficients is isolated.
Before giving his result we start with some notions and definitions.

LetM ⊂ Nn. Define the setsMi = {ν ∈ Nn : ν+ei ∈M}, where ei, i = 1, . . . , n,
is the standard basis in Rn. Notice that if we take fM =

∑
m∈M zm then Mi =

supp ∂fM/∂zi for every i = 1, 2, . . . , n. Let I ⊂ {1, . . . , n}. Set

OXI = {x ∈ Rn : xi = 0, i /∈ I}.

Observe that OXI is the hyperplane spanned by axes OXi, i ∈ I.
Let I ⊂ {1, 2, . . . , n}. We say that M satisfies the Kouchnirenko condition for I

if there exist at least |I| nonempty sets among the sets M1 ∩OXI , . . . ,Mn ∩OXI .
We say thatM satisfies the Kouchnirenko condition ifM satisfies the Kouchnirenko
condition for every I ⊂ {1, 2, . . . , n}.

Remark 3.1. It is easy to check that M satisfies the Kouchnirenko condition if
and only if a finite subset of M satisfies the Kouchnirenko condition.

Remark 3.2. If M satisfies the Kouchnirenko condition, it can happen that the
singularity fM is not an isolated singularity. For example let fM = (z1+z2)(z3+z1).
It is easy to check that f is not isolated singularity and is degenerate on the face
S determined by fS = z3(z1 + z2).

Example 3.3. a) Let f(z1, z2) = z21 + z1z2. We show that supp f satisfies the
Kouchnirenko condition. Put M = supp f. Then M1 = {(0, 1), (1, 0)}, M2 =
{(1, 0)}. If I = {1, 2} or I = ∅ we easily check that M satisfies the Kouchnirenko
condition. If I = {1}, then M2 ∩OX2 6= ∅. If I = {2}, then M1 ∩OX1 6= ∅.
b) Let f(z1, z2, z3) = z1(z1 + z2 + z3). We show that supp f does not satisfy the
Kouchnirenko condition. Indeed, take I = {2, 3} then |I| = 2 but onlyM1∩OXI 6=
∅.
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Now we explain the Kouchnirenko condition for I in the border cases |I| = 1
and |I| = n.

Property 3.4. Let f : (Cn, 0) −→ (C, 0) be a singularity. We have the following
properties:

(i) supp f satisfies the Kouchnirenko condition for every I = {i}, i = 1, 2, . . . , n
if and only if f is nearly convenient,

(ii) supp f satisfies the Kouchnirenko condition for I = {1, 2, . . . , n} if and
only if f ′zi 6= 0, i = 1, 2, . . . , n.

Proof.

(i) PutM = supp f. Suppose thatM satisfies the Kouchnirenko condition for every
I = {i}, i = 1, 2, . . . , n. It is equivalent to saying that for every i = 1, 2, . . . , n, there
exists ji such that Mji ∩ OXi 6= ∅. This condition is equivalent to the condition
that there exists a vertex of Γ+(f) lying on the plane OXjiXi at most at distance
1 to OXi.

(ii) It is a direct consequence of the definition of the Kouchnirenko condition. �

The following property shows that the Kouchnirenko condition for supp f implies
that the Newton diagram of a singularity f has non-empty intersection with every
coordinate hyperplane in Rn, n ≥ 3.

Property 3.5. Let f : (Cn, 0) −→ (C, 0) , n ≥ 3, be a singularity. If supp f
satisfies the Kouchnirenko condition then Γ+(f) ∩ OXI 6= ∅ for every set I ⊂
{1, 2, . . . , n}, |I| = n− 1.

Proof. Put M = supp f. Suppose that M satisfies the Kouchnirenko condition.
Without loss of generality it suffices to show Γ+(f)∩OXI 6= ∅ for I = {2, 3, . . . , n}.
Indeed, by the Kouchnirenko condition there exist at least n − 1 nonempty sets
among the sets M1 ∩OXI , . . . ,Mn ∩OXI . Since n ≥ 3 there exists i 6= 1 such that
Mi∩OXI 6= ∅. Let A ∈Mi∩OXI for some i 6= 1. Since i 6= 1 then A−ei ∈M∩OXI .
Hence Γ+(f) ∩OXI 6= ∅. It ends the proof. �

The two following propositions give conditions equivalent to the Kouchnirenko
condition for supp f in terms of the Newton diagram of singularity f in two and
three variables.

Proposition 3.6. Let f :
(
C2, 0

)
−→ (C, 0) be a singularity. Then the following

conditions are equivalent:

(i) f is nearly convenient,
(ii) supp f satisfies the Kouchnirenko condition.

Proof. The implication (ii) ⇒ (i) follows from Property 3.4(i). Now let us sup-
pose that the condition (i) is satisfied. Let I ⊂ {1, 2}. For I = ∅ or I = {1, 2}
then it is easy to see that supp f satisfies the Kouchnirenko condition. If I = {1}
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or I = {2} then by Property 3.4(i) we get that supp f satisfies the Kouchnirenko
condition for such I. �

Proposition 3.7. Let f :
(
C3, 0

)
−→ (C, 0) be a singularity. Then the following

conditions are equaivalent:

(i) f is nearly convenient and Γ+(f) ∩OXiXj 6= ∅ for every i, j ∈ {1, 2, 3},
i 6= j,

(ii) supp f satisfies the Kouchnirenko condition.

Proof. Put M = supp f. The implication (ii)⇒ (i) follows from Properties 3.4(i)
and 3.5. Now let us suppose that the condition (i) is satisfied and take I ⊂ {1, 2, 3}.
If I = ∅ or I = {1, 2, 3} then it is easy to check that M satisfies the Kouchnirenko
condition for such I. If I = {i} for some i ∈ {1, 2, 3} then by Property 3.4(i) M
satisfies the Kouchnirenko condition for such I. Now let I = {1, 2, 3} \ {i} for some
i ∈ {1, 2, 3}.Without loss of generality we may assume that i = 1. Since f is nearly
convenient we can choose points A,B ∈ supp f such that dist(A,OX2) ≤ 1 and
dist(B,OX3) ≤ 1. Consider the following cases:

(a) A,B ∈ OX2X3. Then M2 ∩ OX2X3 6= ∅ and M3 ∩ OX2X3 6= ∅. Hence M
satisfies the Kouchnirenko condition for I in this case.

(b) A ∈ OX2X3 and B 6∈ OX2X3. Since A ∈ OX2X3 and dist(A,OX2) ≤ 1
then M2 ∩ OX2X3 6= ∅. Since B 6∈ OX2X3 and dist(B,OX3) ≤ 1then
B ∈ OX1X3 and B is at distance 1 to OX3. Therefore M1 ∩ OX2X3 6= ∅.
Summing up M satisfies the Kouchnirenko condition for I in this case.
(We consider analogously the case A 6∈ OX2X3 and B ∈ OX2X3.)

(c) A 6∈ OX2X3 and B 6∈ OX2X3. Then A,B ∈ OX1X3 and are at distance 1
to OX3. Hence M1 ∩ OX2X3 6= ∅. Since Γ+(f) ∩ OX2X3 6= ∅ then there
exists C ∈ supp f∩OX2X3. ThereforeMj∩OX2X3 6= ∅ for some j ∈ {2, 3}.
Summing up M satisfies the Kouchnirenko condition for I in this case.

�

There are some equivalent combinatorial conditions to the Kouchnirenko condi-
tion. Hertling and Kurbel collected such conditions for quasihomogeneous polyno-
mial in [HK12, Lemma 2.1] but this lemma is also true without the assumption of
quasihomogeneity. Now we give a refined version of their lemma.

For x = (x1, . . . , xn) ∈ Rn define |x| = |x1|+ . . .+ |xn|.

Lemma 3.8. Let M ⊂ Nn and |m| ≥ 2, m ∈ M. Then the following conditions
are equaivalent.

(K) M satisfies the Kouchnirenko condition.
(K’) M satisfies the Kouchnirenko condition for every I ⊂ {1, 2, . . . , n} such

that |I| ≤ n+1
2 .
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(C1) For every nonempty set I ⊂ {1, 2, . . . , n} we have M ∩ OXI 6= ∅ or there
exists K ⊂ {1, 2, . . . , n} \ I with |K| = |I| such that Mk ∩ OXI 6= ∅ for
every k ∈ K.

(C1’) As (C1), but only I with |I| ≤ n+1
2 .

(C2) For every I, J ⊂ {1, 2, . . . , n} with |I| < |J | there exists k ∈ {1, 2, . . . , n}\I
such that Mk ∩OXJ 6= ∅.

The proof is the same as the proof of [HK12, Lemma 2.1].
Now we give [Ko77, Thm. 1] in a slightly refined version.

Theorem 3.9. Let M ⊂ Nn and |m| ≥ 2 for every m ∈ M. Then the following
conditions are equivalent.

(ISe) There exists an isolated singularity f : (Cn, 0)→ (C, 0) such that supp f ⊂
M.

(ISg) A singularity f , supp f ⊂M with generic coefficients is an isolated singu-
larity.

(K) M satisfies the Kouchnirenko condition.

Remark 3.10. fM is a singularity if and only if |m| ≥ 2 for every m ∈M.

Remark 3.11. (This remark is a slightly refined part of [HK12, Remarks 2.3])
Several people discovered parts of Theorem 3.9. We will not prove this theorem
here, but comment on its history and references.

(i) The implication (ISe) ⇒ (K) is a consequence of [Ko76, Thm. I] and
[Ko76, Remarque 1.13 (ii)], but the Kouchnirenko did not carry out the
explanation of [Ko76, Remarque 1.13 (ii)] in detail. He gave a short proof
of the refined version (ISe) ⇔ (K ′) in [Ko77, Thm. 1]. This reference
[Ko77] seems to have been cited up to now only in [Sh79], it seems to have
been almost completely ignored.

(ii) Around the same time as Kouchnirenko, Orlik and Randell proved (ISe)⇔
(C2) in the preprint [OR76, Thm. 2.12], but the published paper [OR77]
does not contain this result. It seems that they have not published this
result.

(iii) O.P. Shcherbak stated a result for maps [Sh79, Thm. 1] from which one can
extract (ISe) ⇔ (C1), but he did not provide a proof. This was done by
Wall [Wa96, Chap. 5], who also stated explicitly (ISe) ⇔ (ISg) ⇔ (C1)
for maps in [Wa96, Thm. 5-1] and quasihomogeneous version of (ISe) ⇔
(ISg) ⇔ (C1) for maps in [Wa96, Thm. 5-3]. The hypersurface case was
done by Wall explicitly in [Wa96, (5-7)].
(For details see Section 4.)

(iv) A short proof valid only in quasihomogeneous case of (ISg)⇔ (C1) is given
by Kreuzer and Skarke [KS92, proof of Thm. 1]. Although it requires some
work to see that the condition stated in [KS92, Thm. 1] is equivalent to
(C1).

As a direct consequence of Theorem 3.9 we have the following corollary.
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Corollary 3.12. The support of an isolated singularity f satisfies the Kouch-
nirenko condition.

Proof. PutM = supp f. Suppose to the contrary, there exists I ⊂ {1, . . . , n} such
that there are exactly p < |I| nonempty sets Mj1 ∩ OXI , . . . ,Mjp ∩ OXI among
the sets Mi ∩ OXi, i = 1, 2, . . . , n. Therefore Mk ∩ OXI = ∅ for k ∈ {1, 2, . . . n} \
{j1, . . . , jp}. For such k we obviously get

(1)
∂f

∂zk
=
∑
i6∈I

zihi and hence {z ∈ Cn : zi = 0, i 6∈ I} ⊂
{
∂f

∂zk
= 0

}
,

for some hi ∈ On. Substitute zi = 0 for i /∈ I to the system of equations:
∂f

∂zj1
= · · · = ∂f

∂zjp
= 0.

We get a system of p equations with |I| variables. Therefore by (1) and Corollary
8 in [G, p. 81] we get

dim{∇f = 0} ≥ |I| − p > 0,

which contradicts the assumption that zero of ∇f is isolated. �

Remark 3.13. Saito proved that a support of an isolated singularity f satisfies
condition (C1), which by Lemma 3.8 is equivalent to the Kouchnirenko condition
(see Lemma 1.5 in [Sa71]). It can also be extracted from Remark 3 in [Sh79].

As a direct consequence of the above corollary and Property 3.4(i) we give the
following property.

Property 3.14. Every isolated singularity f is nearly convenient.

4. Quasihomogeneous case

Quasihomogeneous singularities are a special class of singularities. Obviously to
determine when they are isolated we may check whether they satisfy the Kouch-
nirenko condition. However, we would like to give combinatorial conditions in terms
of their weights instead. By Milnor-Orlik formula [MO70] for quasihomogeneous
isolated singularities the Milnor number µ(f) is equal to

∏n
i=1[(d/wi)− 1]. Hence

a first necessary condition is that
∏n
i=1[(d/wi)− 1] is a positive integer number. It

is not a sufficient condition which the example below shows.

Example 4.1. Let f(z1, z2, z3) = z51 + z42 + z21z
2
3 . It is a quasihomogeneous poly-

nomial with weight system (4, 5, 6, 20) and(
20

4
− 1

)(
20

5
− 1

)(
20

6
− 1

)
= 28 ∈ N.

On the other hand f is not nearly convenient. Hence by Property 3.14 the singu-
larity f is not an isolated singularity. �
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A good tool to examine whether singularities are isolated is the Poincaré func-
tion. For quasihomogeneous polynomial with weight system (w1, . . . , wn, d), wi <
d, i = 1, 2, . . . , n, the Poincaré function is a rational function

ρw,d(t) =
n∏
i=1

(td − twi)

(twi − 1)
.

It is well known that if there exists a quasihomogeneous isolated singularity with
weight system (w1, . . . , wn, d) then ρw,d(t) ∈ N[t] (see [AGV] or [Bou, Chap. V,
sec. 5.1). Hence we have a second necessary condition for quasihomogeneous
singularities to be isolated. It turns out that for dimensions n = 2, 3, it is also a
sufficient condition.

Theorem 4.2. [Sa87, Thm. 3] Let (w1, . . . , wn, d), wi < d, i = 1, 2, . . . , n be a
weight system and n ≤ 3. Then ρw,d(t) ∈ Z[t] if and only if there exists an isolated
quasihomogeneous singularity with weight system (w1, . . . , wn, d).

Remark 4.3. The above theorem is also stated in [Ar74, remark after Cor. 4.13]
and [AGV, 2nd remark in 12.3].

The condition ρw,d(t) ∈ Z[t] is equivalent to a simple numerical condition.

Lemma 4.4. ([HK12], Lemma 2.4) Let (w1, . . . , wn, d), wi < d, i = 1, 2, . . . , n be a
weight system. The following conditions are equivalent:

(P) ρw,d(t) ∈ Z[t],
(GCD) for every J ⊂ {1, . . . , n} the gcd{wj : j ∈ J} divides at least |J | of the

numbers d− wk, k = 1, . . . , n.

Example 4.5. For the quasihomogeneous singularity f(z1, z2, z3) = z51 + z42 +
z21z

2
3 with weight system (4, 5, 6, 20) from Example 4.1 the condition (GCD) is not

satisfied. Indeed, take J = {3}, then w3 = 6 does not divide any of numbers:
d − w1 = 15, d − w2 = 16, d − w3 = 14. Hence by the above lemma ρw,d(t) 6∈ Z[t]
and by Theorem 4.2 there is no isolated quasihomogeneous singularity with such
weight system.

On the other hand for quasihomogeneous singularity f(z1, z2, z3) = z51+z42+z1z
2
3

with weight system (4, 5, 8, 20) we easily check the condition (GCD) is satisfied.
Therefore by Theorem 4.2 and Theorem 3.9 a quasihomogeneous singularity with
weight system (4, 5, 8, 20) with generic coefficients is an isolated singularity. �

For n ≥ 4 the condition ρw,d(t) ∈ Z[t] is not a sufficient condition in Theorem
4.2. See the following example which comes from [AGV, 12.3] and was given by
Ivlev.

Example 4.6. Let f(z1, z2, z3, z4) = z2651 + z82z1 + z43z2 + z114 z1. It is a quasi-
homogeneous singularity with weight system (1, 33, 58, 24, 265). We easily check
that f satisfies (GCD) condition and hence by Lemma 4.4 the Poincaré function
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ρw,d(t) ∈ Z[t]. On the other hand, supp f does not satisfy the Kouchnirenko con-
dition for I = {2, 4} since only OXI ∩ supp f ′z1 6= ∅. Therefore, by Corollary 3.12,
f cannot be an isolated singularity.

5. Nondegenarate class

In the previous sections we examined the characterization of isolated singularities
in the case of generic coefficients. In this section we will consider the same problem
for fixed coefficients in the class of nondegenerate singularities. Precisely, we take a
nondegenerate singularity f : (Cn, 0) −→ (C, 0) and ask if there exist combinatorial
conditions for the support of f, which imply (or are equivalent) to f being an
isolated singularity. For dimensions n = 2, 3 we give such equivalent conditions.

Theorem 5.1. Let f : (C2, 0) −→ (C, 0) be a nondegenerate singularity. Then the
following conditions are equivalent:

(a) f is an isolated singularity,
(b) f is nearly convenient.

Remark 5.2. The definition of near convenience for n = 2 appeared for the first
time in [Len96] and Theorem 5.1 was stated in this paper. See also [Len08].

Theorem 5.3. [BKO] Let f : (C3, 0) −→ (C, 0) be a nondegenerate singularity.
Then the following conditions are equivalent:

(a) f is an isolated singularity,
(b) f is nearly convenient and Γ+(f) ∩OXiXj 6= ∅, i, j ∈ {1, 2, 3}, i 6= j.

By Properties 3.6, 3.7 we can merge Theorems 5.1 and 5.3 in one following
theorem.

Theorem 5.4. Let f : (Cn, 0) −→ (C, 0) , n ≤ 3, be a nondegenerate singularity.
Then the following conditions are equivalent:

(a) supp f satisfies the Kouchnirenko condition,
(b) f is an isolated singularity.

The proof of the above theorem is given after the proof of Theorem 5.6. It seems
that for n ≥ 4 Theorem 5.4 is also true. Therefore we may state the following
conjecture.

Conjecture 5.5. Let f : (Cn, 0) −→ (C, 0) , n ≥ 1, be a nondegenerate singularity.
Then the following conditions are equivalent:

(a) supp f satisfies the Kouchnirenko condition,
(b) f is an isolated singularity.

Now, we give some sufficient combinatorial conditions for nondegenerate singu-
larity to be isolated.
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Theorem 5.6. Let f : (Cn, 0) −→ (C, 0) , n ≥ 2, be a nondegenerate singularity
such that

(i) f is nearly convenient,
(ii) Γ+(f) ∩OXiXj 6= ∅, i, j ∈ {1, . . . , n}, i 6= j.

Then f is an isolated singularity.

Remark 5.7. Observe that condition (ii) only is not necessary for an isolated
singularity. Indeed, take f(z1, z2, z3, z4) = z1z2 + z3z4. Of course, f is an isolated
singularity, but does not satisfy the condition (ii).

Since every convenient singularity satisfies the conditions (i) and (ii), as a direct
consequence of the above theorem we have the following corollary.

Corollary 5.8. Every convenient nondegenarate singularity is an isolated singu-
larity.

To prove Theorem 5.6 we give some lemmas and properties. Most of them can
be found in [O13] and [BKO] but we repeat them for the convenience of the reader
in slightly refined versions. For a series φ ∈ C{t}, φ 6= 0, by infoφ (resp. incoφ) we
mean the initial form of φ (resp. the coefficient of infoφ). Let f : (Cn, 0)→ (C, 0)
be a nonzero holomorphic function in an open neighborhood of 0 ∈ Cn and let∑
ν∈Nn aνz

ν be the Taylor expansion of f at 0. Let w = (w1, . . . , wn) ∈ (N+)n. We
define the number

ordw f = inf{ν1w1 + . . .+ νnwn : ν = (ν1, . . . , νn) ∈ supp f}
and we call it the order of f with respect to w. The sum of such monomials
aν1...νnz

ν1
1 . . . zνnn for which ν1w1 + . . .+ νnwn = ordw f is called the initial form of

f with respect to w and is denoted by infow f. Now we give two simple and useful
properties. We omit their easy proofs.

Property 5.9. (see Property 2.1 in [O13]) Let f : (Cn, 0)→ (C, 0) , f(0) = 0 and
φ = (φi)

n
i=1 ∈ C{t}n be a parametrization such that φ(0) = 0, φi 6= 0, i = 1, . . . , n.

Put w = (ordφi)
n
i=1. If infow f ◦ infoφ 6= 0, then

info(f ◦ φ) = infow f ◦ infoφ, ord(f ◦ φ) = ordw f.

Property 5.10. (see Property 2.2 in [O13]) Let f : (Cn, 0) → (C, 0) , f(0) =
0, w ∈ (N \ {0})n, i ∈ {1, . . . , n}. Suppose that infow f depends on zi, then

(infow f)′zi = infow f
′
zi .

The following lemma is used in the proof of Lemma 5.14, which in turn is the
main tool in the proof of Theorem 5.6.

Lemma 5.11. (see Lemma 2.3 in [O13]) Let f : (Cn, 0) −→ (C, 0) , n ≥ 2, be a
singularity and φ = (φi)

n
i=1 ∈ C{t}n be a parameterization such that φ(0) = 0, φi 6=

0, i = 1, . . . , n. Put w = (ordφi)
n
i=1 and

K = {i ∈ {1, . . . , n} : f ′zi ◦ φ = 0} 6= ∅.
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Then for the face S = ∆(w,Γ+(f)) ∈ Γ(f) we get that (fS)′zi ◦ infoφ = 0 for i ∈ K.

Proof. Put J = {j ∈ K : S ⊂ {(x1, . . . , xn) ∈ Rn : xj = 0}}. Then for every
i ∈ K \ J we can find a monomial in infow f in which the variable zi appears.
Therefore by Property 5.10 we get (infowf)′zi = infow f

′
zi for i ∈ K \ J. Therefore

by Property 5.9 we get for i ∈ K \ J

0 = infowf ′zi ◦ infoφ = (infow f)′zi ◦ infoφ = (fS)′zi ◦ infoφ.

On the other hand (fS)′zi ◦ infoφ = 0, for i ∈ J. �

The following proposition is a direct consequence of the above lemma.

Proposition 5.12. (see Corollary 2.4 in [O13]) Let f : (Cn, 0) −→ (C, 0) , n ≥ 2,
be a singularity and φ = (φi)

n
i=1 ∈ C{t}n be a parametrization such that φ(0) =

0, φi 6= 0, i = 1, . . . , n. If (∇f) ◦ φ = 0, then there exists a face S ∈ Γ(f) such that
(∇fS) ◦ infoφ = 0. Thus f is degenerate on the face S.

The following well-known property says that the Newton boundary of the re-
striction f |{zk+1=...=zn=0} is the restriction of the Newton boundary of f to the set
{(x1, . . . , xn) ∈ Rn : xk+1 = . . . = xn = 0}.

Property 5.13. Let f ∈ On, n ≥ 2. Assume that g(z1, . . . , zk) = f(z1, . . . , zk,
0, . . . , 0) ∈ Ok, k < n, is a nonzero germ. Then

(2) Γ(g) = {S ∈ Γ(f) : S ⊂ {xk+1 = . . . = xn = 0}} .

Proof. ” ⊂ ”. Let S ∈ Γ(g), then S = ∆(u,Γ+(g)) for some u ∈ (R+ \ {0})k. Of
course, S ⊂ Γ+(f) ∩ {xk+1 = . . . = xn = 0}. Set

u′ = (u1, . . . , uk, l(u,Γ+(g)) + 1, . . . , l(u,Γ+(g)) + 1) ∈ Rn.

We show that S = ∆(u′,Γ+(f)). By definition of u′ we have that l(u′,Γ+(f)) can
be attained only for v ∈ Γ+(f) ∩ {xk+1 = . . . = xn = 0}. On the other hand it is
easy to check that

Γ+(f) ∩ {xk+1 = . . . = xn = 0} = Γ+(g).

So we get l(u′,Γ+(f)) = l(u,Γ+(g)) and ∆(u′,Γ+(f)) = ∆(u,Γ+(g)). Summing up
we obtain S = ∆(u′,Γ+(f)), so S ∈ Γ(f).

” ⊃ ”. Let S ∈ Γ(f) and S ⊂ {xk+1 = . . . = xn = 0}. Then S = ∆(u,Γ+(f))
for some u ∈ (R+ \ {0})n and as we observed above Γ+(f) ∩ {xk+1 = . . . = xn =
0} = Γ+(g). So l(u,Γ+(f)) = l(u′,Γ+(g)), where u′ = (u1, . . . , uk). It follows that
∆(u′,Γ+(g)) = ∆(u,Γ+(f)). Hence S = ∆(u′,Γ+(g)), so S ∈ Γ(g). That ends the
proof. �

Denote OZiZj = {z ∈ Cn : zk = 0, k /∈ {i, j}}, i 6= j, i, j = 1, 2, . . . n. The
following lemma is a stronger version of Proposition 5.12.
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Lemma 5.14. (see Lemma 4.3 in [BKO]) Let f ∈ On, n ≥ 2, be a singularity and
∇f ◦φ = 0 for some φ = (φ1, . . . , φn) ∈ C{t}n, φ(0) = 0. Assume there exist i 6= j,
such that φi 6= 0, φj 6= 0 and f|OZiZj

6≡ 0. Then there exists S ∈ Γ(f) on which f
is degenerate.

Proof. For simplicity we may assume that φ1, . . . , φk 6= 0, φk+1 = . . . = φn = 0
for some k ≥ 2. We can represent f in the form

f(z1, . . . , zn) = g(z1, . . . , zk) + zk+1hk+1(z1, . . . , zn) + . . .+ znhn(z1, . . . , zn)

By the assumption we get g 6= 0, g(0) = 0, ∇g(φ1, . . . , φk) = 0. By Proposition
5.12 there exists S ∈ Γ(g), such that (ordφi)

k
i=1 is a primitive vector of S and

∇gS ◦ infoφ = 0. By Property 5.13 we get S ∈ Γ(f). Of course fS = gS . Therefore
we have

(fS)′zi(infoφ1(t), . . . , infoφk(t), t, . . . , t) ≡ 0, i = k + 1, . . . , n

and since (∇gS) ◦ infoφ = 0, then

(fS)′zi(infoφ1(t), . . . , infoφk(t), t, . . . , t) ≡ 0, i = 1, . . . k.

Hence
(fS)′zi(incoφ1, . . . , incoφk, 1, . . . , 1) = 0, i = 1, . . . , n,

thus f is degenerate on S. �

Proof of Theorem 5.6 Suppose to the contrary, that f is not an isolated singu-
larity. Then by the Curve Selection Lemma there exists a non-zero parametization
φ = (φ1, . . . , φn) such that (∇f) ◦ φ = 0. It is not possible for φ to have n − 1
coordinates equal to zero. Indeed, if for example φ = (0, . . . , 0, φn), φn 6= 0, then
by Property 3.14 we get that f = azknzi + . . . for some i ∈ {1, . . . , n}, a 6= 0 and
k ≥ 1. Hence f ′zi(0, . . . , 0, φn) 6= 0, which contradicts the assumption (∇f) ◦φ = 0.
Therefore we may assume that φi 6= 0, φj 6= 0 for some i 6= j. Without loss of gen-
erality we may assume that φ1 6= 0, φ2 6= 0. Since Γ+(f) ∩OX1X2 6= ∅, by Lemma
5.14 we have that f is degenerate on some face S ∈ Γ(f), which contradicts the
assumption on f. �

Now we can prove Theorem 5.4.

Proof of Theorem 5.4 If f is an isolated singularity then by Corollary 3.12
supp f satisfies the Kouchnirenko condition. Now suppose that f satisfies the
Kouchnirenko condition. Then by Properties 3.6, 3.7 and Theorem 5.6 we get that
f is an isolated singularity. �

Remark 5.15. Wall considered another type of nondegeneracy than the Kouch-
nirenko nondegeneracy. He got similar results to the ones obtained in this section,
see Lemma 1.2 and Theorem 1.4 in [Wa98].
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6. The Milnor and Newton numbers

By the main theorem of [Ko76] we always have µ(f) ≥ ν(f), with equality for
nondegenerate isolated singularities. Hence, if µ(f) is finite, then ν(f) is also finite.
The inverse implication is false, which shows the following simple example.

Example 6.1. Let f(z1, . . . , zn) = (z1 + . . .+ zn)2. Obviously f is not an isolated
singularity, but since f is convenient we have ν(f) <∞.

It is well known by the local Nullstellensatz that µ(f) is finite if and only if f
is an isolated singularity. On the other hand, Kouchnirenko writes in Remark 1.13
(ii) of his celebrated paper [Kou76] that the Newton number of a singularity f is
finite if and only if supp f satisfies the Kouchnirenko condition. Summing up, we
can reformulate the results of the previous sections in terms of the Newton and
Milnor numbers. By Theorem 3.9 we have the following corollary.

Corollary 6.2. Let M ⊂ Nn, |m| ≥ 2 for every m ∈M. Assume that ν(fM ) <∞.
Then a singularity f, supp f ⊂M with generic coefficients is an isolated singularity
i.e. µ(f) <∞.

We can also reformulate the results of Section 5. Observe that the singularity
from Example 6.1 is degenerate. However the implication ν(f) <∞⇒ µ(f) <∞
is true in the class of nondegenarate singularities in dimensions n ≤ 3. Indeed,
using Remarque 1.13 (ii) in [Ko76] we can reformulate Theorem 5.4, Corollary 5.8
and Conjecture 5.5 in terms of the Newton and Milnor numbers in the following
way.

Proposition 6.3. Let f : (Cn, 0) −→ (C, 0) , n ≤ 3, be a nondegenerate singular-
ity. Then

ν(f) <∞⇔ µ(f) <∞
Proposition 6.4. Let f : (Cn, 0) −→ (C, 0) , n ≥ 1, be a nondegenerate convenient
singularity. Then

ν(f) <∞⇔ µ(f) <∞
Conjecture 6.5. Let f : (Cn, 0) −→ (C, 0) , n ≥ 1, be a nondegenerate singularity.
Then

ν(f) <∞⇔ µ(f) <∞

Using Proposition 6.4 we may slightly weaken the assumptions of part (ii) of
Theorem I in [Ko76] in the following way.

Corollary 6.6. Let f : (Cn, 0) −→ (C, 0) , n ≥ 1, be a nondegenerate convenient
singularity. Then µ(f), ν(f) are finite and µ(f) = ν(f).

Remark 6.7. Wall obtained a result analogous to the above corollary in the class
of singularities nondegenerate in his sense, see Theorem 1.6 in [Wa98].
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ON C0-SUFFICIENCY OF JETS

BEATA OSIŃSKA-ULRYCH, GRZEGORZ SKALSKI, STANISŁAW SPODZIEJA

Abstract. The paper presents some details of the proofs by Kuiper and
Kuo, and Bochnak and Łojasiewicz that refer to the impact of the Łojasiewicz
exponent of gradient mappings on C0-sufficiency of jets.

Introduction

Let ω : (Rn, 0) → (R, 0) be a k-jet and f : (Rn, 0) → (R, 0) - one of its Ck-
realizations. We say that f is C0-sufficient in the Ck class if, for any other Ck-
realization g : (Rn, 0) → (R, 0) of ω there exist homeomorphisms ϕ : (Rn, 0) →
(Rn, 0) and ψ : (R, 0)→ (R, 0) such that

g ◦ ϕ = ψ ◦ f in a neighbourhood of the origin.

If this is the case, we say that f and g are C0-right-left equivalent, and if ψ = id R
we say that f and g are C0-right equivalent. We say that f and g are V -equivalent
if f−1(0) and g−1(0) are homeomorphic as germs at 0.

The sufficiency of jets was studied by many authors, among them: Kuiper,
Kuo, Bochnak and Łojasiewicz. In their, nowadays considered classical papers, the
sufficiency of k-jets with respect to C0-right equivalence and the sufficiency of k-jets
with respect to V -equivalence were studied, and necessary and sufficient conditions
for sufficiency were given. In these cases the necessary and sufficient condition was
formulated in terms of the Łojasiewicz inequality.

The present article presents some details of the proofs by Kuiper and Kuo and
Bochnak and Łojasiewicz.
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1. Cr-equivalence of functions

One of the major problems of catastrophe theory proposed by René Thom [30]
is the classification of singularities of mappings and smooth functions at a point.
If f : (Rn, a) → (Rs, b) will stand for the mapping f defined in a neighbourhood
of the point a ∈ Rn with values in Rs such that f(a) = b, this problem can be
formulated as follows:

Problem 1. What conditions must be satisfied by smooth mappings f, g :
(Rn, a) → (Rs, b) (of class Ck; analytic), for the existence of diffeomorphisms
ϕ : (Rn, a) → (Rn, a), ψ : (Rs, b) → (Rs, b) (of class Cr; analytic isomorphisms)
such that

(1) g ◦ ϕ = ψ ◦ f in a neighbourhood of the point a.

The mappings f, g satisfying (1) are called equivalent at the point a (respec-
tively Cr-equivalent; analytically equivalent), if ϕ, ψ are smooth diffeomorphisms
(respectively of class Cr; analytic isomorphisms).

We will illustrate the above problem by the following examples.

Example 1. Let k ∈ Z, k > 0. All functions f : (R, 0) → (R, 0), defined by the
formula

f(x) = akx
k + ak+1x

k+1 + ak+2x
k+2 + · · · , ak 6= 0,

are analytically equivalent at zero. Indeed, it is sufficient to show that any such
function is analytically equivalent at zero to the function g(x) = xk, x ∈ R. Taking
ψ(t) = t sgn ak, t ∈ R, and

ϕ(x) = x k
√
|ak + ak+1x+ ak+2x2 + · · · | in a neighbourhood of zero,

we see that ϕ and ψ are analytic isomorphisms and ψ◦f = g◦ϕ in a neighbourhood
of zero.

For the functions of several variables, Problem 1 is not so simple as in Example
1 for one variable.

Example 2. Let

f(x1, x2) = x21x2 + ax52, g(x1, x2) = x21x2 + x52, (x1, x2) ∈ R2,

where a ∈ R is a parameter. Then the polynomials f and g have the same Taylor
polynomial of order 3 at zero, equals to x21x2, however

• For a > 0, the functions f and g are analytically equivalent at zero, because
for the analytic isomorphism

ϕ(x1, x2) =

(
1

10
√
a
· x1, 5

√
a · x2

)
, (x1, x2) ∈ R2,

we have f = g ◦ ϕ in R2.
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• For a 6 0, the functions f and g are not even C0-equivalent at zero, because
by simple calculation we check that their sets of zeros have different numbers
of topological components in each neighbourhood of the point (0, 0) ∈ R2.
Thus they can not be homeomorphic in any neighbourhood of the point
(0, 0).

In Examples 1, 2 we received analytic equivalence of analytic functions. There
are analytic functions which are C0-equivalent at a point but are not analytically
equivalent, as the following example shows.

Example 3. (Whitney). Let

f(x1, x2) = x1x2(x1 + x2)(x1 − ax2), g(x1, x2) = x1x2(x1 + x2)(x1 − bx2),

where a, b > 0 are parameters. According to Corollary 1 in Section 2, for every
a, b > 0 functions f and g are C0-equivalent at zero. For a 6= b, the functions f and
g are not even C1-equivalent. If there were diffeomorphisms ϕ : (R2, 0) → (R2, 0),
ψ : (R, 0) → (R, 0) of class C1 such that ψ ◦ f = g ◦ ϕ in a neighbourhood of
zero, then the differential d0ϕ at zero would transform the tangent spaces at zero
of the components of f−1(0) to the corresponding tangent spaces of the components
of g−1(0). Then identify the tangent spaces to R2 at 0 with R2 we would get
d0ϕ(f−1(0)) = g−1(0), which is impossible.

In view of this example, we see that the analytic classification of functions leads
to a very rich family of different classes. This redirected the study of equivalence
of functions to the study of Cr-equivalence, especially to study of C0-equivalence at
a point. In this paper we concentrate on study the C0-equivalence of Ck functions.

2. C0-sufficiency of jets

Examples 1 and 2 impose the following particularly important case of the Prob-
lem 1.

Problem 2. What conditions should be imposed on the Taylor polynomials of
functions f and g such that these functions were C0-equivalent at zero?

This problem leads to the notion of C0-sufficiency of jets.

By a k-jet of Ck function f : (Rn, 0)→ (R, 0) we mean a family v of all functions
g : (Rn, 0) → (R, 0) of class Ck with the same k-th Taylor polynomial centered at
zero as a Taylor polynomial of function f :

k∑
j=1

1

j!

n∑
i1,...,ij=1

∂jf

∂xi1 · · · ∂xij
(0)xi1 · · ·xij .

The function f is called then Ck-realization of the jet v. By Jk(n) we denote the
set of all k-jets of Ck functions in n variables. The k-jet of a function f can be
identified with the k-th Taylor polynomial of the function. So Jk(n) is isomorphic
to RN , where N =

(
n+k
n

)
− 1.
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A k-jet is called C0-sufficient in the Ck class, if any two of its Ck-realizations
are C0-equivalent at zero.

R. Thom [30] (see also [13]) proved that by adding to any polynomial a "generic"
form of "high degrees" we get a C0-sufficient k-jet in an appropriate class (the same
is also true for the k-jets of mappings). Precisely, we have

Theorem 1. (R. Thom). Let us denote by πs : Jk+s(n) → Jk(n) the natural
projection. Let v ∈ Jk(n). Then there is an integer s > 0 and there is a proper
algebraic subset Σ ⊂ π−1s (v) such that every (k + s)-jet w ∈ π−1s (v) \ Σ is C0-
sufficient in the Ck+s class.

Bochnak and Łojasiewicz generalized this theorem (see [1]) showing that s = 1
(see Proposition 1 in Section 3).

In the language of k-jets Problem 2 can be written as follows.

Problem 3. What conditions should be imposed on the k-jet to make it C0-sufficient
in the Ck class?

The C0-sufficiency of jet implies a topological equivalence (in a neighbourhood
of zero) of sets of zeros of its realizations. This leads to the following definition:

A k-jet is called V -sufficient in Ck class, if for any two its Ck-realizations f and
g, the sets f−1(0) and g−1(0) are homeomorphic in a neighbourhood of zero.

The following beautiful theorem is a solution of Problem 3.

Theorem 2. (Kuiper-Kuo, Bochnak-Łojasiewicz). Let v be a k-jet with f as
its Ck-realization, where k ∈ Z, k > 0. The following conditions are equivalent:

(a) v is C0-sufficient in Ck class,
(b) v is V -sufficient in Ck class,
(c) |∇f(x)| > C|x|k−1 in a neighbourhood of the point 0 ∈ Rn for some con-

stant C > 0, where ∇f is the gradient of the function f .

In the above theorem the implication (a)⇒(b) is obvious; the implication (b)⇒(c)
was proved by Bochnak and Łojasiewicz [1]; the implication (c)⇒(a) was proved
by Kuiper [11] and Kuo [12]. The proof of Bochnak and Łojasiewicz (by contradic-
tion) is based on the construction of an appropriate Ck-realization of the jet, whose
set of zeros is not a topological manifold in any neighbourhood of the point 0. It is
known that for every Ck-realization f of V -sufficient k-jet, the set of zeros f−1(0) is
a topological manifold in some neighbourhood of zero or an empty set (see Lemma
2 in Section 4). The proofs of Kuiper and Kuo are based on the construction of a
homeomorphism ϕ (see definition of C0-equivalence) using the general solution of
an appropriate system of ordinary differential equations. The proof of Theorem 2
is discussed further in Section 4.

In Section 4, as the implication (c)⇒(a) of Theorem 2, we similarly prove the
following
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Corollary 1. Let f, g ∈ R[x1, x2] be homogeneous forms that are decomposed in
the products of linear forms without multiple factors. If deg f = deg g, then f and
g are C0-equivalent at zero.

Of course, the implication (a)⇒(b) in Theorem 2 holds also in the complex do-
main, where instead of the Ck functions it should be considered the class of holomor-
phic functions. It is easy to check that the proof of the implication (c)⇒(a) is trans-
ferred without any changes to the complex case. Unfortunately, the Bochnak and
Łojasiewicz proof of the implication (b)⇒(c) is typically real and cannot be trans-
ferred to the case of holomorphic function. This implication over C was generalized
by Teissier [29], who showed that for the holomorphic functions f : (Cn, 0)→ (C, 0),
the smallest integer k such that k-jet of function f is C0-sufficient in the class of
holomorphic functions, satisfies the inequality k > dL0 (∇f)e + 1, where dxe de-
notes the smallest integer k ≥ x and L0 (∇f) – the Łojasiewicz exponent of ∇f at
zero (see Section 3). The inequality k 6 dL0 (∇f)e+ 1 was proved by Chang and
Lu [3], who based on the article of Kuo [12].

The problem of sufficiency of jets is of interest to many mathematicians, besides
the mentioned above, inter alia: Kirschenbaum and Lu [8]; Koike [9]; Kucharz [10];
Kuo [13]; Kuo and Lu [15]; Lu [17]; Pelczar [21], [22]; Płoski [24]; Randall [25];
Takens [28]; Trotman [32].

3. The Łojasiewicz exponent

Let f : (Rn, 0) → (R, 0) be a function of class Ck. In view of Theorem 2, a
special importance is imposed on the optimal (i. e. the smallest) exponent α in
the Łojasiewicz inequality [20]

(Ł) |∇f(x)| > C|x|α in a neighbourhood of zero for some C > 0.

This exponent is called the Łojasiewicz exponent of gradient ∇f at a zero and is
denoted by L0 (∇f). This is obviously an invariant of singularities, that is, it
stays invariant under a diffeomorphic change of variables. The knowledge of the
exponent and its connections to other invariants of singularities helps in a more
accurate characterization of different classes of singularities. This fact caused a
great interest and an intense study of the exponent L0 (∇f). It was of interest
to many scientists, among others: Chądzyński [4], Chądzyński and Krasiński [6];
Khadiri and Tougeron [7]; Kuo and Lu [14]; Lejeune-Jalabert and Teissier [19];
Płoski [23]; Teissier [29]; Tougeron [31].

Bochnak and Łojasiewicz generalized Theorem 1 (see [1], page 259) showing
that s = 1. In the proof of this generalization they use Theorem 2 (c)⇒(a) to the
following fact.
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Proposition 1. For a polynomial f : (Rn, 0)→ (R, 0) of degree at most k there is a
proper algebraic subset Σ ⊂ RN , where N =

(
n+k
n−1
)
, such that for every polynomial

Hc(x) =
∑

i1+···+in=k+1

ci1,...,inx
i1
1 · · ·xinn ,

where c = (ci1,...,in ; i1 + · · ·+ in = k + 1) ∈ RN \ Σ, we have

(2) L0 (∇(f +Hc)) 6 k,

so then |∇(f + Hc)(x)| > C|x|k in a neighbourhood of the point 0 ∈ Rn for some
constant C > 0 (that is f +Hc satisfies the condition (c) of Theorem 2 for k + 1).

Proof. Since for every proper algebraic subset V ⊂ CN , a set V ∩RN is a proper
algebraic subset of RN , then it suffices to prove the proposition over C. Let

Ω ={c ∈ CN : ∃r>0 ∇(f +Hc)(x) 6= 0 for 0 < |x| < r},
∆ ={c ∈ CN : ∃r>0 ∇(f +Hb)(x) 6= 0 for 0 < |x| < r, |b− c| < r}.

G ={c ∈ CN : ∃C,r>0 |∇(f +Hc)(x)| > C|x|k for |x| < r}.

Note first that the set Ω has a nonempty interior. Indeed, let us consider an
algebraic set:

Γ = {(c, x) ∈ CN × Cn : ∇Hc(x) = 0}.
Let Γ = Γ1 ∪ . . . ∪ Γl be a decomposiotion of Γ into irreducible components. Of
course, CN ×{0} ⊂ Γ. Take any component Γi0 of the set Γ such that CN ×{0} ⊂
Γi0 . We will show that CN ×{0} = Γi0 . Suppose to the contrary, that CN ×{0} (
Γi0 , then dimC Γi0 > N . Since ∇Hc(x) = 0 is a system of homogenous equations,
it is easy to check that for each c ∈ CN there is x 6= 0, such that (c, x) ∈ Γi0 .
However, it is impossible, because for c ∈ CN such that Hc(x) = xk+1

1 + · · ·+ xk+1
n

there is no x 6= 0 satisfying ∇Hc(x) = 0. Summing up Γi0 = CN × {0}. Denoting
by A the set

⋃
i6=i0{c ∈ CN : (c, 0) ∈ Γi}, we see that this is a proper algebraic

subset of CN . Moreover, for c ∈ CN \ A the gradient ∇(f + Hc) has no zeros at
infinity. Thus, the set of zeros of ∇(f +Hc) is finite. This gives that CN \ Ω ⊂ A
and prove the announced remark.

Taking into account the above remark we will prove that CN \ ∆ is contained
in a proper algebraic subset Σ of space CN . In fact, let

Ωj = {c ∈ CN : ∇(f +Hc)(x) 6= 0 for 0 < |x| < 1

j
}, j ∈ N.

Then Ω =
⋃∞
j=1 Ωj . From the previous observation IntΩ 6= ∅, so from the Baire

theorem, there is j0 ∈ N such that IntΩj0 6= ∅. Let

T = {(c, x) ∈ CN × Cn : ∇(f +Hc)(x) = 0}
and let T = T1 ∪ . . . ∪ Tm be a decomposiotion of T into irreducible components.
If CN × {0} 6⊂ T , then by setting Σ = {c ∈ CN : (c, 0) ∈ T} we get the mentioned
remark in this case. So, assume that CN × {0} ⊂ T . Then there is i0 such that
CN × {0} ⊂ Ti0 . We will show that CN × {0} = Ti0 . Assuming the contrary,
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we get dimC Ti0 > N . Thus, each point (c, 0) is an accumulation point of the set
Ti0 \ [CN × {0}]. In particular, each point (c, 0), where c ∈ Ωj0 is an accumulation
point of the set Ti0 \ [CN × {0}]. This is impossible, because Ωj0 has nonempty
interior. As a consequence CN × {0} = Ti0 . Now, setting Σ =

⋃
i6=i0{c ∈ CN :

(c, 0) ∈ Ti} we get the mentioned remark, too.
Finally we will show that CN \Σ ⊂ G, which finishes the proof of the proposition.

We will base on the original Bochnak and Łojasiewicz proof [1], p. 259. Suppose
to the contrary, that there exists c ∈ CN \ Σ such that c 6∈ G. Then there exists a
sequence (aν) ⊂ Cn \ {0}, aν → 0 such that

(3)
|∇(f +Hc)(aν)|

|aν |k
→ 0 as ν →∞.

We will prove that there exists a sequence bν ∈ CN such that

(4) ∇(f +Hc)(aν) = ∇Hbν (aν) and bν → 0.

Indeed, let δν = ∇(f + Hc)(aν) and Lν : Cn → Cn be an isometry such that
Lν( aν

|aν | ) = (1, 0, . . . , 0) and Lν(0) = 0. Denote by Mν the matrix of mapping
Lν . Then all the coefficients of the matrices Mν and M−1ν are bounded by 1. Let
δν ·M−1ν = (θν,1, . . . , θν,n). Then from (3) we have

(5)
θν,i
|aν |k

→ 0 as ν →∞ for i = 1, . . . , n.

Take polynomials

Gν(x) =
θν,1
k + 1

xk+1
1 +

n∑
i=2

θν,ix
k
1xi

and
Hbν =

1

|aν |k
Gν ◦ Lν .

Then

∇Gν(x) =
(
xk−11 (θν,1x1 + kθν,2x2 + · · ·+ kθν,nxn) , θν,2x

k
1 , . . . , θν,nx

k
1

)
,

so ∇Gν(1, 0, . . . , 0) = (θν,1, . . . , θν,n). Hence

∇Hbν (aν) =
1

|aν |k
∇Gν(Lν(

aν
|aν |
|aν |)) ·Mν = (θν,1, . . . , θν,n) ·Mν = δν .

Moreover, (5) implies that bν → 0 as ν → ∞, because bν are made of points(
θν,1

|aν |k(k+1)
,
θν,2
|aν |k , . . . ,

θν,n
|aν |k

)
by the linear transformations with the uniformly bounded

coefficients. As a result, (4) has been proved. In summary, from (4) and the defi-
nition of sequence δν we get

∇(f +Hc−bν )(aν) = ∇(f +Hc)(aν)−∇Hbν (aν) = 0

and c − bν ∈ CN \ Σ ⊂ ∆ for sufficiently large ν (because c − bν → c as ν → ∞).
This contradicts the definition of set ∆ and completes the proof. �

From the Proposition 1 we deduce immediately its generalization.
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Corollary 2. Let f : (Rn, 0) → (R, 0) be an analytic function and k ∈ Z, k > 0.
Then there is a proper algebraic subset Σ ⊂ RN , where N =

(
n+k
n−1
)
, such that for

each c = (ci1,...,in ; i1 + · · · + in = k + 1) ∈ RN \ Σ we have L0 (∇(f + Hc)) 6 k,
where Hc(x) =

∑
i1+···+in=k+1 ci1,...,inx

i1
1 · · ·xinn .

Proof. Let f = g + h + u, where g : (Rn, 0) → (R, 0) denotes the polynomial
of degree at most k, h : (Rn, 0) → (R, 0) denotes the homogeneous polynomial
of degree k + 1 and u : (Rn, 0) → (R, 0) denotes the analytic function such that
ord 0u > k + 1. According to Proposition 1, there exists a proper algebraic subset
Σ1 ⊂ RN such that the inequality L0 (∇(g+Hc)) 6 k holds for every c ∈ RN \Σ1.
If c0 ∈ RN is a system of coefficients of h, then Σ2 = {c− c0 : c ∈ Σ1} is a proper
algebraic subset of RN and L0 (∇(g + h + Hc)) 6 k for every c ∈ RN \ Σ2. Since
ord 0u > k + 1, we obtain |∇u(x)| 6 C|x|k+1 in a neighbourhood of zero, for some
C > 0. This and the previous one implies the inequality L0 (∇(f +Hc)) 6 k. �

The example which follows will illustrate the preceding results: Theorem 1 and
Proposition 1 .

Example 4. Let f ∈ J2(2) be of the form f(x1, x2) = x21.
Then the 2-jet f is not C0-sufficient in C2 class, because, for example, a set of

zeros of its C2-realization g(x1, x2) = x21 − x42 is not homeomorphic to f−1(0) in
any neighbourhood of zero.

Let Σ = R3 × {0}, for every c = (c1, c2, c3, c4) ∈ R4 \ Σ and let Hc(x) =

c1x
3
1 + c2x

2
1x2 + c3x1x

2
2 + c4x

3
2. Then the sets of zeros of ∂(f+Hc)∂x1

and ∂(f+Hc)
∂x2

have
no common tangents at a point zero. Thus L0 (∇(f + Hc)) 6 2 and according to
the Theorem 2, the 3-jet f +Hc, c ∈ R4 \ Σ, is C0-sufficient in the C3 class.

Remark 1. It is worth going back for a moment to the polynomial g(x1, x2) =
x21x2 + x52 in Example 2. We will calculate L0 (∇g). In these calculations, it is
convenient to pass to the complex case. In this case, the Łojasiewicz exponent of
gradient ∇g is defined in the same way as above and denoted by LC

0 (∇g). Using
the results of Chądzyński and Krasiński (Theorem 1 in [6], see also [5]) we get that
the exponent LC

0 (∇g) is attained on the set

S = {z ∈ C2 :
∂g

∂z1
(z)

∂g

∂z2
(z) = 0}.

It is easy to check that S = S1 ∪ S2 ∪ S3 ∪ S4, where

S1 = C× {0}, S2 = {0} × C,

S3 = {(−i
√

5t2, t) ∈ C2 : t ∈ C}, S4 = {(i
√

5t2, t) ∈ C2 : t ∈ C}.

Then

∇g|S1
(t, 0) = (0, t2), ∇g|S2

(0, t) = (0, 5t4),

∇g|S3
(−i
√

5t2, t) = (−2i
√

5t3), ∇g|S1
(i
√

5t2, t) = (−2i
√

5t3).
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Hence, we get LC
0 (∇g) = 4. In particular L0 (∇g) 6 4. Since ∇g(0, t) = (0, 5t4)

for t ∈ R, we deduce that L0 (∇g) = 4.
The polynomial f = x21x2+ax52, a ∈ C, is a C4-realization of 4-jet v of polynomial

g. Since L0 (∇g) = 4 = 5−1, the Łojasiewicz inequality (Ł) and Theorem 2 implies
that the 4-jet v is not C0-sufficient. It agrees with the statement in Example 2, that
for a 6 0 the functions f and g are not equivalent at zero. By Theorem 2, 5-jet of
function g is C0-sufficient in C5 class. This means that the addition to g any terms
of degree at least 6, leads to an equivalent at zero function g.

4. Proof of Theorem 2

Implication (c)⇒(a). Let us begin with a simple lemma.

Lemma 1. Let G ⊂ R × Rn be an open set and W : G → Rn be a continuous
mapping. If a system

(6)
dy

dt
= W (t, y)

has a global uniqueness of solutions property in G \ (R× {0}) and if

(7) |W (t, x)| 6 C|x| for (t, x) ∈ U,
for some constant C > 0 and some neighbourhood U ⊂ G of (R × {0}) ∩ G, then
(6) has a global uniqueness of solutions property in G.

Proof. By the uniqueness of solutions of (6) in G\ (R×{0}), it suffices to prove
that there exists a locally unique solution of a system (6) that passes through
the point 0. Assume that (t0, 0) ∈ G. Condition (7) implies that the mapping
y0(t) = 0, defined in some neighbourhood of t0, is a solution of (6). Suppose that
there exists another solution y1 : (a, b)→ Rn of (6) such that y1(t0) = 0. Then y0
and y1 fulfill the following system of integral equations

(8) y(t) =

∫ t

t0

W (ξ, y(ξ))dξ.

Let 0 < ε < 1
C be small enough to guarantee that graphs of y0, y1 : I → Rn, where

I = [t0 − ε, t0 + ε] ⊂ (a, b) lie in U . Then there exists η ∈ I such that

% := sup
t∈I
|y0(t)− y1(t)| = |y0(η)− y1(η)|.

In view of the assumption we get that % > 0. Therefore (8) and assumption (7)
give

% =

∣∣∣∣∫ η

t0

[W (ξ, y0(ξ))−W (ξ, y1(ξ))]dξ

∣∣∣∣ 6 ∣∣∣∣∫ η

t0

C|y1(ξ))|dξ
∣∣∣∣ 6 C%ε < %,

which is impossible. �

Proof of implication (c)⇒(a). In the case k = 1 this is a consequence of the
inverse function theorem. Let us assume that k > 1. Let f : Rn → R be the k-th
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Taylor polynomial of a k-jet v and let g be a Ck-realization of jet v. It suffices to
show that mappings f and g are C0-equivalent. From the choice of g we have

lim
x→0

g(x)− f(x)

|x|k
= 0,

which implies that for every ε0 > 0 there exists δ0 > 0 such that

(9) |g(x)− f(x)| 6 ε0|x|k for |x| < δ0.

We may assume that g is defined in Rn. Therefore we have a well-defined
mapping F : R× Rn → R, where

F (ξ, x) = f(x) + ξ(g(x)− f(x)), ξ ∈ R, x ∈ Rn.

We note that (cf. Kuo [12], Lemma 1, p. 168) there exist ε and δ > 0 such that

(10) |∇F (ξ, x)| > ε|x|k−1 for |x| < δ and − 2 < ξ < 2.

Indeed, since f and g are Ck functions, ∇(g− f) is a Ck−1 mapping. The choice of
g shows that the (k−1)-th Taylor polynomial centered at zero of mapping ∇(g−f)
vanishes identically. Hence

lim
x→0

|∇(g − f)(x)|
|x|k−1

= 0.

Therefore there exists δ > 0 such that

|∇(g − f)(x)| 6 C

4
|x|k−1 for |x| < δ,

where C comes from the condition (c) of Theorem 2. Since

(11) ∇F (ξ, x) = [(g − f)(x),∇f(x) + ξ∇(g − f)(x)],

then by taking ε = C
2 , we have from assumption (c)

|∇F (ξ, x)| > |∇f(x) + ξ∇(g − f)(x)| > |∇f(x)| − 2|∇(g − f)(x)| > ε|x|k−1

provides |x| < δ and −2 < ξ < 2. This gives (10). One can of course assume that
ε = ε0 and δ = δ0 <

1
2 .

Define G = {(ξ, x) ∈ R×Rn : |x| < δ, −2 < ξ < 2}, where ε and δ are as above.
Let X : G→ Rn × R be a mapping of the form

X(ξ, x) = (X1, . . . , Xn+1) =
(g(x)− f(x))

|∇F (ξ, x)|2
∇F (ξ, x), provided x 6= 0

and X(ξ, 0) = 0. By (9) and (10), we have

(12) |X(ξ, x)| 6 ε|x|k

|∇F (ξ, x)|
6

ε|x|k

ε|x|k−1
= |x| for (ξ, x) ∈ G, x 6= 0.

It is easy to see that the above inequality holds also for x = 0, so X is continuous.
Let us define a vector field W : G→ Rn by

W (ξ, x) =
1

X1(ξ, x)− 1
[X2(ξ, x), . . . , Xn+1(ξ, x)].
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Inequality (12) implies that

|X1(ξ, x)− 1| > 1− |X(ξ, x)| > 1− |x| > 1− δ > 1

2
for (ξ, x) ∈ G,

whence W is well-defined. Moreover it is continuous and

(13) |W (ξ, x)| 6 2|x| for (ξ, x) ∈ G.

Consider now a system of differential equations

(14)
dy

dt
= W (t, y).

Since k > 1, then W is at least of class C1 on G \ (R× {0}), so it is a lipschitzian
vector field. As a consequence, the above system has a uniqueness of solutions
property in G \ (R× {0}). Hence, inequality (13) and Lemma 1 implies the global
uniqueness of solutions of the system (14) throughout G. Since y0(t) = 0, t ∈
(−2, 2) is one of the solutions of (14), then the above implies the existence of
a neighbourhood U ⊂ Rn of 0 such that every integral solution yx of (14) with
yx(0) = x, where x ∈ U , is defined at least in [0, 1].

Now, let us define a mapping ϕ : U → Rn by the formula

ϕ(x) = yx(1),

where yx stands for an integral solution of (14) with yx(0) = x. This mapping is
continuous and bijective. It gives a homeomorphism of some neighbourhoods of the
origin. Indeed, considering solution yx : [0, 1]→ Rn of (14) with yx(1) = x, where
x is from some neighbourhood of the origin, we get that ϕ(yx(0)) = x. Similar
reasoning shows that the mapping x 7→ yx(0) is continuous in the neighbourhood
of the origin. Consequently ϕ : (Rn, 0)→ (Rn, 0) maps homeomorphically a neigh-
bourhood of the origin onto a neighbourhood of the origin.

Finally, note that for every x ∈ U ,

(15) F (t, yx(t)) = const. in [0, 1].

Indeed, from definition of W we derive the formula

[1,W (ξ, x)] =
1

X1(ξ, x)− 1
(X(ξ, x)− e1) for (ξ, x) ∈ G,

where e1 = [1, 0, . . . , 0] ∈ Rn+1 and [1,W ] : G → R × Rn. Thus, if we denote by
〈a, b〉 the scalar product of two vectors a, b, then according to (11) for t ∈ [0, 1],
we have

dF (t, yx(t))

dt
= 〈(∇F )(t, yx(t)), [1,W (t, yx(t))]〉

=
1

X1(t, yx(t))− 1

(
〈(∇F )(t, yx(t)), X(t, yx(t))〉 − ∂F

∂ξ
(t, yx(t))

)
=

1

X1(t, yx(t))− 1

(
g(yx(t))− f(yx(t))− g(yx(t)) + f(yx(t))

)
= 0.
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This gives (15). Finally, (15) yields

f(x) = F (0, x) = F (0, yx(0)) = F (1, yx(1)) = F (1, ϕ(x)) = g(ϕ(x))

for x ∈ U . This ends the proof of the implication (c)⇒(a) in Theorem 2. �

Proof of Corollary 1. Let k = deg f . It suffices to prove the corollary
assumming that

f(x) = (α1x1 + α2x2)h(x) i g(x) = (β2x1 + β2x2)h(x),

where α1, α2, β1, β2 ∈ R and h ∈ R[x1, x2] is a form of degree k − 1. Moreover, it
can be assumed that f and g differ only by a constant factor and that the region
{(x1, x2) ∈ Rn : α1x1 + α1x2 > 0, β1x1 + β2x2 > 0} is disjoint from h−1(0). Then
there is an interval (a, b) containing the interval [0, 1] such that for every ξ ∈ (a, b)
a linear mapping

Lξ(x) = (α1x1 + β1x2) + (1− ξ)[(α2 − α1)x1 + (β2 − β1)x2]

does not divide h. Let F (ξ, x) = f(x) + ξ(g(x)− f(x)). Then F (ξ, x) = Lξ(x)h(x),
so for every ξ ∈ (a, b), function F does not have multiple factors. Therefore after
eventually diminishing the interval (a, b) such that still [0, 1] ⊂ (a, b), and using
the curve selection lemma, we easily show that F satisfies (10) for ξ ∈ (a, b). Since
g− f is a form of degree k, it satisfies (9) for some ε0 > 0. Repeating now the rest
of the proof of the implication (c)⇒(a) in Theorem 2, we get the assertion. �

Implication (b)⇒(c). In developing this proof we used the original Bochnak
and Łojasiewicz proof [1]. Assuming that the implication fails, the proof consists
in the construction of an appropriate Ck-realization of jet, whose set of zeros is not
a topological manifold in any neighbourhood of the point 0. In fact there is the
following

Lemma 2. Let v be a k-jet and let f be its Ck-realization. If v is V -sufficient in
Ck, then there is a neighbourhood U ⊂ Rn of 0 such that f−1(0) ∩ (U \ {0}) is a
(n− 1)-dimensional topological manifold or an empty set.

Proof. Let g be a k-th Taylor polynomial of jet v. Then

h = g + xk+1
1 + · · ·+ xk+1

n

is a Ck-realization of jet v. Moreover ∇h has no zeros at infinity (even over C), so
its set of zeros is finite. Therefore the assertion follows from the implicit function
theorem and from the definition of V -sufficiency. �

A key point in the proof of considered implication is Proposition 2 given below.
In the proof of mentioned proposition we will use the following Morse lemma,
which follows from the previously proven implication (c)⇒(a) in Theorem 2 (cf.
[18] Lemma 2.2).
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Corollary 3. (Morse lemma). Let f be a function of class C2 in a neighbourhood
of a ∈ Rn, n > 1, such that

(16) f(a) = 0, ∇f(a) = 0 and det

[
∂2f

∂xi∂xj
(a)

]
6= 0.

Then there is a homeomorphism ϕ : (Rn, a) → (Rn, a) and there is an integer
0 6 l 6 n such that

f ◦ ϕ(x) =
l∑
i=1

(xi − ai)2 −
n∑

i=l+1

(xi − ai)2 in a neighbourhood of a.

Proof. It suffices to consider the case a = 0. Then, from (16), 2-nd Taylor
polynomial of function f is a quadratic form: h(x) =

∑n
i,j=1

∂2f
∂xi∂xj

(0)xixj . It
can be assumed, from the assumption (16), by the appropriate selection of linear
coordinate system, that

h(x) =
l∑
i=1

x2i −
n∑

i=l+1

x2i for some l ∈ Z, 0 6 l 6 n.

We can directly verify that |∇h(x)| = 2|x|2−1 for x ∈ Rn. Hence and from the
implication (c)⇒(a) in Theorem 2, 2-jet of function h is C0-sufficient in C2. Since
f is C2-realization of this jet, there is a homeomorphism ϕ : (Rn, 0)→ (Rn, 0) such
that f ◦ ϕ = h in a neighbourhood of 0. �

In the proof of Proposition 2 we will also need two known topological facts. Let’s
start with the definition.

The set Sl = {(x1, . . . , xl+1) ∈ Rl+1 : x21 + · · · + x2l+1 = 1} as well as any set
homeomorphic to Sl will be called a sphere of dimension l.

Let A be a topological manifold and S — a sphere in A. The mappings ϕ, ψ :
S → A will be called homotopic in A, if there is a continuous mapping H : S ×
[0, 1]→ A such that

H(x, 0) = ϕ(x) and H(x, 1) = ψ(x) for x ∈ S.
The mapping H will be called a homotopy of ϕ and ψ in A.

We will say that a sphere S is contractible in A, if there is a point a ∈ A such
that the mapping ϕ : S 3 x 7→ x ∈ A is homotopic in A to a constant map
ψ : S 3 x 7→ a. The homotopy of mappings ϕ and ψ will be called a null-homotopy
in A.

Lemma 3. Let A be a topological manifold of dimension k and a ∈ A. If 1 6 l 6
k − 2, then there exists a neighbourhood U ⊂ A of a such that every l-dimensional
sphere S ⊂ U \ {a} is contractible in U \ {a}.

Proof. We may assume, by choosing a neighbourhood U ⊂ A of a homeo-
morphic with Rk, that U = Rk and a = 0. Let S ⊂ Rk \ {0} be an arbitrary
l-dimensional sphere and ϕ : Sl → S be a homeomorphism. Approximating ϕ
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by a polynomial mapping ψ : Sl → Rk \ {0}, we may assume that ϕ and ψ are
homotopic in Rk \ {0}. It is easy to find a line E ⊂ Rk \ ψ(Sl) such that 0 ∈ E.
The mappings ψ and a + ψ are homotopic in Rk \ {0} for every a ∈ E. Moreover
there is a ∈ E such that 0 is not in the convex hull of (a+ψ(Sl)). Therefore a+ψ
is contractible in Rk \ {0}. �

Lemma 4. The sphere S = {(x1, . . . , xl) ∈ Rl : x21 + · · · + x2l = r2}, where r > 0
is not contractible in Rl \ {0}.

Proof. Assume to the contrary that there is a null-homotopy H : S × [0, 1] →
Rl \ {0}. It can be assumed that r = 1 and that H(S × [0, 1]) ⊂ S. Therefore a
mapping h defined by h(x) = H( x

|x| , 1 − |x|) for 0 < |x| 6 1 and h(0) = H(y, 1),
where y ∈ S, is a continuous mapping of a ball D = {x ∈ Rl : |x| 6 r} onto a
sphere S, whereas h(x) = x for x ∈ S. Thus S is a deformation retract of ball D,
which is impossible. �

Proposition 2. Let n > 1 and f : (Rn, a) → (R, 0) be a function of class C2
fulfilling the assumptions (16) of Morse lemma. Then f−1(0) is not a topological
manifold of dimension n− 1 in any neighbourhood of point a.

Proof. In view of Corollary 3 (Morse lemma), it suffices to reduce our consid-
erations to the case a = 0,

f(x) =
l∑
i=1

x2i −
n∑

i=l+1

x2i

and f−1(0) 6= {0}. Then 1 6 l < n. It can be assumed, of course, that l 6 n
2 .

The theorem is clearly true for l = 1, since then a set f−1(0) \ {0} has at least
four topological components in every neighbourhood of the origin for n = 2, and
at least two such components for n > 2. It can therefore be assumed that n > 2
and l > 1 and then

(17) 1 6 l − 1 6 (n− 1)− 2.

Assume now that for some neighbourhood Ω ⊂ Rn of the point 0 ∈ Rn,
A = f−1(0) ∩ Ω is a topological manifold of dimension n− 1.

Therefore (17) and Lemma 3 implies that there is a neighbourhood U ⊂ A of the
origin such that every (l − 1)-dimensional sphere S ⊂ U \ {0} is contractible in
U \ {0}. However, by taking a (l − 1)-dimensional sphere

S = {(x1, . . . , xl) ∈ Rl : x21 + · · ·+ x2l = r2}

for sufficiently small r > 0 and a point
o
x= (

o
xl+1, . . . ,

o
xn) ∈ Rn−l such that

o
x

2
l+1+· · ·+ o

x2n = r2, we see that S×{ox} ⊂ U \{0}. The sphere S×{ox} is contractible
in U \ {0} by the assumption. Let H = (h1, . . . , hn) : S ×{ox} ×[0, 1]→ U \ {0} be
a null-homotopy of S × {ox} in U \ {0}. Then

h21 + · · ·+ h2l = h2l+1 + · · ·+ h2n in S × {ox} × [0, 1].
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Hence h21 + · · ·+ h2l does not vanish anywhere in S × {ox} × [0, 1], so (h1, . . . , hl) is
a null-homotopy of S in Rl \ {0}. This contradicts the assertion of Lemma 4. �

Remark 2. The assumption det
[

∂2f
∂xi∂xj

(a)
]
6= 0 in Corollary 2 may not be omit-

ted, because a polynomial f(x1, x2) = x31 − x32 does not satisfy this assumption for
a = 0 and f−1(0) = {(t, t) ∈ R2 : t ∈ R} is a topological manifold of dimension 1.

In the proof of the considered implication the well known Bochnak and Ło-
jasiewicz inequality [1] play the dominant role.

Lemma 5. (Bochnak-Łojasiewicz inequality) Let 0 < θ < 1. If the function
f : (Rn, 0)→ (R, 0) is analytic, then

|x||∇f(x)| > θ|f(x)| in some neighbourhood of 0.

Proof of implication (b)⇒(c). The assumption (b) implies that k-th Taylor
polynomial h of function f is nonzero. Otherwise the functions f1(x) = 0, f2(x) =

xk+1
1 would be the Ck-realizations of a k-jet which is V -sufficient in the class Ck,

which is impossible. Hence, in case n = 1, L0 (∇f) = ord 0f
′ 6 k − 1. This gives

(c) in this case. Assume therefore that n > 1.
In the case k = 1 from (b) it follows ∇f(0) 6= 0. In fact, otherwise for the two C1

realizations f1(x) = x21 and f2(x) = x1x2 of the 1-jet v the sets f−11 (0) and f−12 (0)
would be homeomorphic, in some neighbourhoods of zero, which is impossible. The
condition ∇f(0) 6= 0 obviously implies (c). Therefore we may assume that k > 1.

Since
lim
x→0

∇f(x)−∇h(x)

|x|k−1
= 0,

L0 (∇f) 6 k− 1 if and only if L0 (∇h) 6 k− 1. Hence, it is sufficient to verify the
implication for f = h.

Assume to the contrary that (c) is not satisfied. Then, for a sequence (aν) ⊂
Rn \ {0} such that aν → 0 as ν →∞, we have

(18)
|∇f(aν)|
|aν |k−1

→ 0 as ν →∞.

Therefore, the Bochnak-Łojasiewicz inequality (Lemma 5) gives

(19)
|f(aν)|
|aν |k

→ 0 as ν →∞.

Taking a subsequnce of (aν), we may suppose that |aν+1| 6 1
2 |aν | for ν ∈ N. Then

Bν = {x ∈ Rn : |x− aν | 6
1

4
|aν |}, ν ∈ N, is a family of disjoint closed balls.

Let us take an arbitrary sequence (λν) ⊂ R such that

(20)
λν

|aν |k−2
→ 0 as ν →∞.
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Since k > 1, we may assume that

(21) λν is not an eigenvalue of the matrix
[

∂2f

∂xi∂xj
(aν)

]
.

Let α : Rn → R be a function of class C∞ such that α(x) = 0 for |x| > 1
4 and

α(x) = 1 in some neighbourhood of 0. Consider a mapping F : Rn → R defined by
the formulas

F (x) = α

(
x− aν
|aν |

)(
f(aν) + daνf(x− aν) +

1

2
λν |x− aν |2

)
for x ∈ Bν

and F (x) = 0 for x 6∈
⋃∞
ν=1Bν . Then F is of class Ck (even of class C∞) and

F (0) = 0. Moreover f(aν) = F (aν) and ∇f(aν) = ∇F (aν), so

(22) (f − F )(aν) = 0 i ∇(f − F )(aν) = 0 for ν ∈ N.

Let M > 0 be a constant such that |α(x)| 6M for x ∈ Rn. Then for x ∈ Bν ,
|F (x)|
|x|k

6M
|f(aν) + daνf(x− aν) + 1

2λν |x− aν |
2|

|x|k

6 2kM
|f(aν)|+ |∇f(aν)||aν |+ 1

2 |λν ||aν |
2

|aν |k
.

Hence, (18), (19) and (20) implies
|F (x)|
|x|k

→ 0 as x→ 0.

In consequence, f−F is a Ck-realization of k-jet v. In view of (22) and the assump-
tion (b), Lemma 2 implies that (f − F )−1(0) is a (n − 1)-dimensional topological
manifold in every sufficiently small neighbourhood of the point 0 ∈ Rn. On the
other hand, (21) gives

det

[
∂2(f − F )

∂xi∂xj
(aν)

]
6= 0 for ν ∈ N.

This with (22) and Proposition 2 implies that (f − F )−1(0) is not a topological
manifold of dimension n− 1 in any neighbourhood of aν . In particular it is not a
topological manifold in any neighbourhood of 0 (because aν → 0). This contradic-
tion yields the truth of the considered implication. �

5. Equivalence of mappings at infinity

Let K = R or K = C and let f : Kn → K. By the Łojasiewicz exponent at
infinity of gradient ∇f , denoted by L∞(∇f), we mean the supremum of exponents
ν ∈ R in the following Łojasiewicz inequality :

|∇f(x)| ≥ C|x|ν as |x| > R for some constants C > 0 and R > 0.

It is known that for a polynomial function f we have L∞(∇f) ∈ Q ∪ {−∞} and
L∞(∇f) > −∞ if and only if the set (∇f)−1(0) is finite.
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Similar considerations (as in the above sections of this paper) may be carried
out for functions in neighbourhoods of infinity. In the case of polynomials in two
complex variables P. Cassou-Noguès and H. H. Vui [2, Theorem 5] proved that:

Let f ∈ C[z1, z2], L∞(∇f) ≥ 0 and k ∈ Z, k ≥ 1. The following conditions are
equivalent:
(i) L∞(∇f) ≥ k − 1,
(ii) there exists ε > 0, such that for every polynomial P ∈ C[z1, z2] of degree
degP ≤ k, whose modules of coefficients of monomials of degree k are less or equal
ε, the links at infinity of almost all fibers f−1(λ) and (f + P )−1(λ), λ ∈ C are
isotopic.

Recall that by link at infinity of the fiber P−1(λ) of a polynomial P : C2 → C we
mean the set P−1(λ) ∩ {(x, y) ∈ C2 : |x|2 + |y|2 = r2} for sufficiently large r.

The above result of P. Cassou-Noguès and H. H. Vui was generalized by G. Skalski
[27, Theorems 3, 7]:

Let f ∈ K[x1, . . . , xn], let k ∈ Z, k ≥ 0, and let L∞(∇f) > k − 1. Then
there exists ε > 0, such that for each polynomial P ∈ K[x1, . . . , xn] of degree
degP ≤ k, whose modules of coefficients of monomials of degree k does not exceed
ε, polynomials f and f + P are analytically equivalent at infinity.

We say that functions f, g : Kn → K are analytically equivalent at infinity when
there exists an analytic diffeomorphism ϕ of neighbourhoods of infinity, such that
|ϕ(x)| → ∞ if and only if |x| → ∞ and there exists an analytic diffeomorphism
ψ : K→ K, such that

f ◦ ϕ = ψ ◦ g in a neighbourhood of infinity.

The inverse to the Skalski theorem is false (see [27, Remark 2]) .
The method of proof of this theorem is slightly similar to the proof of Theorem 2

in this article. It consists in integrating the appropriate vector field

W (ξ, x) =
1

X1(ξ, x)− 1
[X2(ξ, x), . . . , Xn+1(ξ, x)],

where

X(ξ, x) = (X1, . . . , Xn+1) =
P (x)

|∇F (ξ, x)|2
∇F (ξ, x)

and F (ξ, x) = f(x)+ξP (x) with ∇F (ξ, x) instead of ∇F (ξ, x) in the complex case.
The method of integration of the field was used also in the result by Rodak and

Spodzieja [26, Theorem 1]:
Let f : Kn → Km, where m ≤ n, be a C2 mapping (holomorphic if K = C).

Assume that there exist k ∈ R and positive constants C,R such that

(23) ν(df(x)) ≥ C|x|k−1, |x| ≥ R.
Then there exists ε > 0 such that for any P ∈ Pk,ε the mappings f and f + P are
isotopic at infinity,
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where the symbol Pk,ε (for k ∈ R, ε > 0) denotes all C2 mappings P : Kn → Km,
for which there exists R > 0 such that

(24) |P (x)| ≤ ε|x|k and |dP (x)| ≤ ε|x|k−1 for any |x| ≥ R,

where dP (x) is the diferential of P at x ∈ Kn. The symbol ν stands for

ν(A) = inf{‖A∗ϕ‖ : ϕ ∈ Y ′, ‖ϕ‖ = 1},

where A∗ is the adjoint operator in the space of linear continuous mappings from
Y ′ to X ′ and X ′, Y ′ are the dual spaces of Banach spaces X an Y respectively.
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INTRODUCTION TO THE LOCAL THEORY

OF PLANE ALGEBRAIC CURVES

ARKADIUSZ P LOSKI

Abstract. We consider the algebroid plane curves defined by formal power
series of two variables with coefficients in an algebraically closed field. Using

quadratic transformations we prove the local normalization theorem. Then we

study the intersection multiplicity of algebroid curves and give an introduction
to the Newton diagrams.

These notes are intended as a concise introduction to the local theory of plane
algebraic curves. We consider the algebroid plane curves defined by formal power
series of two variables with coefficients in an algebraically closed field. Using qua-
dratic transformations we prove the local normalization theorem. Then we study
the intersection multiplicity of algebroid curves and give an introduction to the
Newton diagrams. We assume known the basic theorems on formal power series:
the Weierstrass Preparation Theorem, the Implicit Function Theorem and Hensel’s
Lemma. A standard reference for this material is Abhyankar [1] (see also Hefez
[5]). The book [8] by Seidenberg was very helpful when preparing this text. For
further study of algebroid curves we refer the reader to Campillo [2].

In what follows K is an algebraically closed field of arbitrary characteristic. The
ring of formal power series in two variables x, y with coefficients in the field K
will be denoted K[[x, y]] and its field of fractions K((x, y)). If f =

∑
i>k fi is a

nonzero formal power series represented as the sum of homogeneous forms fi with
fk 6= 0 then we write ord f = k and in f = fk. Additionally we put ord 0 =∞
and in 0 = 0. We use the usual conventions on the symbol ∞. A power series
u ∈ K[[x, y]] is a unit if uv = 1 for a power series v ∈ K[[x, y]]. Note that u is a unit
if and only if its constant term u(0) is nonzero. If f, g ∈ K[[x, y]] are such that

2010 Mathematics Subject Classification. Primary 32S55, Secondary 14H20.
Key words and phrases. Plane algebraic curve, branch, intersection multiplicity, Newton

diagram.
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f = gu for a unit u then we write f ∼ g. The principal ideal of K[[x, y]] generated
by f is denoted (f)K[[x, y]]. The reader will find the description of prime ideals of
the ring K[[x, y]] in Appendix C.

1. Algebroid curves, quadratic transformations

Let f ∈ K[[x, y]] be a nonzero formal power series without constant term. The
algebroid curve f = 0 is by definition the principal ideal (f)K[[x, y]] generated
by f . We also denote {f = 0} the algebroid curve of equation f = 0. Thus we
have {f = 0} = {g = 0} if and only if f ∼ g. The curve {f = 0} is reduced
(resp. irreducible) if the power series f does not have multiple factors (resp. is
irreducible). If f = fm1

1 . . . fms
s in K[[x, y]] with fi irreducible and coprime then

the curves {fi = 0} are called irreducible components of {f = 0} with multiplicities
mi.

The order (multiplicity) of the curve {f = 0} is the number ord f . The definition
is correct because from f ∼ g it follows ord f = ord g. The curves of order 1 are
called regular or non-singular. The curves of order strictly greater than 1 are called
singular. If f ∼ g then in f = c in g for a constant c ∈ K \ {0}. The affine curve
in f = 0 (see Fulton [4]) is called the tangent cone to the curve f = 0. From the
Factorization Lemma (see Appendix A) we get

Property 1.1. The tangent cone to the irreducible curve {f = 0} is an affine line,
i.e. in f = l ord f , where l = bx− ay is a non-zero linear form.

Let Φ(x, y) = (ax + by + · · · , cx + dy + · · · ) be a pair of formal power series
such that ad − bc 6= 0. Then f 7→ f ◦ Φ is an isomorphism of the ring K[[x, y]]
(every K-isomorphism of K[[x, y]] is of this form). We have ord f = ord (f ◦ Φ)
and in (f ◦ Φ) = in f ◦ in Φ, where in Φ = (ax+ by, cx+ dy).

The algebroid curves {f = 0} and {g = 0} are equivalent if f ◦Φ = gu for a pair
Φ satisfying the above conditions and for a unit u. Equivalent curves are of the
same orders and their tangent cones are affine isomorphic. Any two regular curves
are formally equivalent.

Let f = f(x, y) ∈ K[[x, y]] be an irreducible power series of order n > 0. From
Property 1.1 it follows that ord f(x, 0) = n or ord f(0, y) = n.

Definition 1.2. Suppose that f ∈ K[[x, y]] is a power series such that ord f(0, y) =
ord f = n (in this case we say that f is y-general). Let y1 be a new variable. A
power series f1 ∈ K[[x, y1]] is a strict quadratic transformation of f ∈ K[[x, y]] if
f1(0, 0) = 0 and f(x, ax+ xy1) = xnf1(x, y1) in K[[x, y1]] for an a ∈ K. We write
then f1 = Q(f).

Let us note the basic properties of quadratic transformations. We keep the
notations introduced in Definition 1.2

Lemma 1.3. Suppose that the irreducible power series f ∈ K[[x, y]] is y-general of
order n and put f1 = Q(f). Then
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(i) the line y − ax = 0 is tangent to the curve f(x, y) = 0 (so the constant
a ∈ K is uniquely determined by f) and ord f1(0, y1) = n. If a 6= 0 then
ord f(x, 0) = n.

(ii) If f ∼ g in K[[x, y]] and f1 = Q(f), g1 = Q(g) then f1 ∼ g1 in K[[x, y1]].
(iii) If f ∈ K[[x]][y] is a distinguished polynomial in y then f1 ∈ K[[x]][y1] and

f1 is a distinguished polynomial in y1.

Proof. Since f is y-general and irreducible we have f(x, y) = c(y − a0x)n +
· · ·+(terms of order > n) in K[[x, y]] for a constant c 6= 0 (see Property 1.1).
Therefore we get f(x, ax + xy1) = xnf1(x, y1) in K[[x, y1]] with f1(x, y1) =
(a − a0 + y1)n + · · ·+ (terms of order > n). Thus f1(0, 0) = 0 if and only if
a = a0 and in this case ord f1(0, y1) = n. The remaining properties follow directly
from Definition 1.2. �

Lemma 1.4. If f ∈ K[[x, y]] is a y-general irreducible power series then f1 =
Q(f) ∈ K[[x, y]] is an irreducible power series.

Proof. By Lemma 1.3 (iii) we may assume that f = f(x, y) is a y-distinguished
polynomial of degree n. Then the power series f1 = f1(x, y1) is a y1-distinguished
polynomial of degree n and it suffices to check that f1 is irreducible in the ring
K[[x]][y1]. Suppose the contrary

f1(x, y1) =
(
yk1 + b1(x)yk−1

1 + · · ·+ bk(x)
) (
yl1 + c1(x)yl−1

1 + · · ·+ cl(x)
)

in K[[x]][y1], where k, l > 0.

Clearly k + l = n and consequently

f(x, ax+ xy1) = xnf1(x, y1) =

=
(
(xy1)k + b1(x)x(xy1)k−1 + · · ·+ bk(x)xk

)
·

·
(
(xy1)l + c1(x)x(xy1)l−1 + · · ·+ cl(x)xl

)
.

Let z be a new variable. From the above identity it follows that

f(x, ax+ z) =

=
(
zk + xb1(x)zk−1 + · · ·+ xkbk(x)

) (
zl + xc1(x)zl−1 + · · ·+ xlcl(x)

)
.

This shows that the power series f(x, ax + z) ∈ K[[x, z]] is reducible. We get a
contradiction because it is irreducible as the image of the irreducible power series
f(x, y) by an isomorphism K[[x, y]]→ K[[x, z]]. �

Lemma 1.5. Let f = f(x, y) ∈ K[[x, y]] be an irreducible y-general power series of
order n = ord f > 1. Then there exists a sequence of power series fi = fi(x, yi) ∈
K[[x, yi]], i = 0, 1, . . . ,m such that f0 = f (and y0 = y), fi+1 = Q(fi), ord fi = n
for i < m and ord fm < n.

Proof. Let y0 = y and f0 = f and let us consider f1 = Q(f0). If ord f1 < n
then we put m = 1 and the sequence f0, f1 verifies the condition. If ord f1 = n
(we have always ord f1 6 ord f since ord f1(0, y1) = n) then we put f2 = Q(f1).
If ord f2 < n we are done. We have to show that after a finite number of steps
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we get a sequence f0, . . . , fm such that fi+1 = Q(fi), ord fi = n for i < m and
ord fm < n. Otherwise there would exist an infinite sequence f0, . . . , fm, . . . such
that fi+1 = Q(fi) and ord fi = n for all i > 0. Let yi − aix = 0 be the tangent
to the curve fi(x, yi) = 0. It is easy to check that f(x, y(x)) = 0, where y(x) =∑+∞
i=1 ai−1x

i. We get a contradiction because f is irreducible, ord f > 1 and the
condition f(x, y(x)) = 0 implies that y − y(x) divides f(x, y) in K[[x, y]]. �

Now we can construct the transformation reducing the order of an irreducible
power series.

Proposition 1.6. Let f(x, y) ∈ K[[x, y]] be an irreducible y-general power series
of order n = ord f > 1. Let ỹ be a new variable.

Then there exist an integer m > 0 and a polynomial P (x) =
∑m
i=1 ai−1x

i of
degree 6 m such that

(i) f(x, P (x) + xmỹ) = xmnf̃(x, ỹ) in K[[x, ỹ]],

(ii) f̃ = f̃(x, ỹ) ∈ K[[x, ỹ]] is an irreducible power series such that ord f̃ < n,

(iii) we have ord f̃(0, ỹ) = n. If P (x) 6= 0 then ord f(x, 0) = ordP (x) · n,

(iv) if f ∼ W and f ∼ W̃ , where W and W̃ are distinguished polynomials, then

W (x, P (x) + xmỹ) = xmnW̃ (x, ỹ).

Proof. Let f0, f1, . . . , fm be a sequence of power series from Lemma 1.5. Thus
we get fi(x, aix + xyi+1) = xnfi+1(x, yi+1) (i = 0, 1, . . . ,m − 1) for some ai ∈ K.

Let P (x) =
∑m
i=1 ai−1x

i, ỹ = ym and f̃(x, ỹ) = fm(x, ỹ). Since fi+1 is the strict
transformation of fi (i = 0, . . . ,m − 1) we get (i) of Proposition 1.6. Part (ii)
follows from Lemma 1.4.

To check (iii) suppose that k = ordP (x) < ∞. Hence we have ak−1 6= 0 and
ai−1 = 0 for i < k. Consequently we get fi(x, xyi+1) = xnfi+1(x, yi+1) for i < k−1
and fk−1(x, ak−1x+ xyk) = xnfk(x, yk). Since ak−1 6= 0, from the last identity we
obtain ord fk−1(x, 0) = n by Lemma 1.3 (i). From ord fi(x, 0) = n+ ord fi+1(x, 0)
for i < k − 1 we infer that ord f(x, 0) = ord f0(x, 0) = nk.

Property (iv) follows from the fact that f ∼W and f1 ∼W1 imply W1 = Q(W ).
�

Remark 1.7 In the above considerations the power series f ∈ K[[x, y]] is y-
general and for such a power series we define quadratic transformation. If f ∈
K[[x, y]] is x-general then we can easily reformulate the definition. In particular if
ord f(x, 0) = ord f = n then the quadratic transformation is of the form f(by +
yx1, y) = ynf1(x1, y), f1(0, 0) = 0. If ord f(x, 0) = ord f(0, y) = n and ab 6= 0
then the obtained strict quadratic transformations of f are equivalent.
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2. Parametrizations

Let t be a variable. A paramerization is a pair (φ(t), ψ(t)) ∈ K[[t]]2 such that
φ(0) = ψ(0) = 0 and φ(t) 6= 0 or ψ(t) 6= 0 in K[[t]]. Two parametrizations
(φ(t), ψ(t)) and (φ1(t), ψ1(t)) are equivalent if there exists τ(t) ∈ K[[t]], ord τ(t) = 1
such that φ(t) = φ1(τ(t)), ψ(t) = ψ1(τ(t)). A parametrization (φ(t), ψ(t)) is good
if there does not exist τ(t), ord τ(t) > 1 and a parametrization (φ1(t1), ψ1(t1))
such that φ(t) = φ1(τ(t)), ψ(t) = ψ1(τ(t)).

Theorem 2.1 (Normalization Theorem). Let f(x, y) ∈ K[[x, y]] be an irre-
ducible power series. Then there exists a good parametrization (φ(t), ψ(t)) such
that f(φ(t), ψ(t)) = 0, ord f(x, 0) = ordψ(t) and ord f(0, y) = ordφ(t). If
(φ∗(u), ψ∗(u)) is a parametrization such that f(φ∗(u), ψ∗(u)) = 0 then there exists
a series σ(u) ∈ K[[u]], σ(0) = 0 such that φ∗(u) = φ(σ(u)) and ψ∗(u) = ψ(σ(u)).

A good parametrization (φ(t), ψ(t)) such that f(φ(t), ψ(t)) = 0 is called a nor-
malization of the curve f(x, y) = 0. From Theorem 2.1 it follows that every irre-
ducible curve has a normalization unique up to equivalence.

Proof. (of Theorem 2.1) We use induction on ord f .

If ord f = 1 the theorem easily follows from the Implicit Function Theorem.
Suppose that n > 1 is an integer and that the theorem is true for all irreducible
power series of order < n. Fix an irreducible power series f such that ord f = n.
Without diminishing the generality we may assume that ord f(0, y) = n. Let

f̃(x, ỹ) ∈ K[[x, ỹ]] be a power series from Proposition 1.6. Thus we get f(x, P (x) +

xmỹ) = xmnf̃(x, ỹ), where P (x) is a polynomial of degree 6 m, ord f̃(0, ỹ) = n

and ord f̃ < n. By induction hypothesis there is a normalization (φ(t), ψ̃(t)) of the

curve f̃(x, ỹ) = 0 such that ordφ(t) = ord f̃(0, ỹ) and ord ψ̃(t) = ord f̃(x, 0). Let

us put ψ(t) = P (φ(t)) + φ(t)mψ̃(t) and consider the parametrization (φ(t), ψ(t)).
Obviously we have f(φ(t), ψ(t)) = 0.

To check that the parametrization (φ(t), ψ(t)) is good suppose that φ(t) =
φ1(τ(t)), ψ(t) = ψ1(τ(t)) for a parametrization (φ1(t1), ψ1(t1)) and for a series

τ(t) ∈ K[[t]], ord τ(t) > 1. Thus ψ1(τ(t)) − P (φ1(τ(t))) = φ1(τ(t))m ˜ψ(t) and

consequently ord
(
ψ1(t1) − P (φ1(t1))

)
> ordφ1(t1)m. Let us put ψ̃1(t1) :=

ψ1(t1)−P (φ1(t1))
φ1(t1)m . We get then ord ψ̃1(t1) > 0 and ψ̃(t) = ψ̃1(τ(t)). From the

equalities φ(t) = φ1(τ(t)) and ψ̃(t) = ψ̃1(τ(t)) it follows that ord τ(t) = 1 since the

parametrization (φ(t), ψ̃(t)) is good. This proves that (φ(t), ψ(t)) is a normalization
of the curve f(x, y) = 0.

Let us recall that ordφ(t) = ord f̃(0, ỹ) = n = ord f(0, y). To calculate ordψ(t)
let us suppose first P (x) 6= 0. Then ordP (φ(t)) = ( ordP )( ordφ) 6 m( ordφ) =

ordφm < ordφmψ̃ and ordψ(t) = ord
(
P (φ(t)) + φ(t)mψ̃(t)

)
= ordP (φ(t)) =

( ordP )( ordφ) = ( ordP )n = ord f(x, 0) by Proposition 1.6 (iii). If P (x) = 0 then
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ordψ(t) = ordφ(t)mψ̃(t) = mn + ord ψ̃ = mn + ord f̃(x, 0) = ord f(x, 0). Sum-
ming up we have checked that ordφ(t) = ord f(0, y) and ordψ(t) = ord f(x, 0).

Now let (φ∗(u), ψ∗(u)) be a parametrization such that f(φ∗(u), ψ∗(u)) = 0.

Put ψ̃∗(u) = ψ∗(u)−P (φ∗(u))
φ∗(u)m ∈ K((u)). Let W (x, y) be a distinguished polynomial

associated with f(x, y). We get

0 = W (φ∗(u), ψ∗(u)) = W
(
φ∗(u), P (φ∗(u)) + φ∗(u)mψ̃∗(u)

)
=

= (φ∗(u))
mn

W̃
(
φ∗(u), ψ̃∗(u)

)
and hence W̃

(
φ∗(u), ψ̃∗(u)

)
= 0.

From the last equality it follows that ord ψ̃∗(u) > 0 since ψ̃∗(u) is a root of the

distinguished W̃ (φ∗(u), y) ∈ K[[u]][y] (see Remark 2.2 given below). Let (φ(t), ψ̃(t))

be a normalization of the curve f̃(x, ỹ) = 0. By assumption we get φ∗(u) = φ(τ(u))

and ψ̃∗(u) = ψ̃(τ(u)), which implies φ∗(u) = φ(τ(u)) and ψ∗(u) = ψ(τ(u)). �

Remark 2.2 If ζ(u)n + α1(u)ζ(u)n−1 + · · · + αn(u) = 0 in K((u)) then it is
easy to check that ord ζ(u) > infi{ 1

i ordαi(u)}. In particular if the polynomial

yn + α1(u)yn−1 + · · · + αn(u) is distinguished then ordαi(u) > 0 for i = 1, . . . , n
and consequently ord ζ(u) > 0.

Corollary 2.3. If f(x, y) ∈ K[[x, y]] with n = ord f(0, y) < ∞ then there exist
power series α(s), β1(s), . . . , βn(s) ∈ K[[s]] (s is a variable) without constant term
such that

f(α(s), y) ∼
n∏
j=1

(y − βj(s)) in K[[s, y]].

Proof. Using the Weierstrass Preparation Theorem we may assume that f(x, y) ∈
K[[x]][y] is a distinguished polynomial of degree n. We prove the corollary by
induction on n = degy f . If n = 1 the corollary is obvious. Suppose that n > 1 and
the corollary is true for polynomials of degree n− 1. Let f(x, y) be a distinguished
polynomial of degree n. Using Theorem 2.1 to an irreducible factor of the series
f(x, y) we find a parametrization (α(s), β(s)) such that f(α(s), β(s)) = 0. We get
then f(α(s), y) = (y − β(s))g(s, y) in K[[s]][y], where g(s, y) = yn−1 + . . . is a
distinguished polynomial of degree n − 1. We apply the induction hypothesis to
g(s, y). �

Let us note

Corollary 2.4 (Puiseux Theorem). Let K be an algebraically closed field of char-
acteristic l. Let n > 0 be an integer such that n 6≡ 0 (mod l). Then for every
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distinguished and irreducible polynomial P (x, y) = yn +
∑n
i=1 ai(x)yn−i there ex-

ists a series y(s) ∈ K[[s]], y(0) = 0 such that

P (sn, y) =
∏
εn=1

(y − y(εs)).

Proof. Let (φ(t), ψ(t))be a normalization of the curve P (x, y) = 0. Then ordφ(t) =
ordP (0, y) = n and there exists a series σ(t) such that φ(t) = σ(t)n in K[[t]] since
n 6≡ 0 (mod l) (we use the Implicit Function Theorem or Hensel’s Lemma to the
equation yn − φ(t) = 0). Clearly ordσ(t) = 1 and ψ(t) = y(σ(t)) for a power
series y(s) ∈ K[[s]]. The parametrization (sn, y(s)) is good. Therefore we have
GCD ({n} ∪ supp y(s)) = 1 and y(ε1s) 6= y(ε2s) if εn1 = εn2 = 1 and ε1 6= ε2. Hence
we get the corollary because P (sn, y(εs)) = 0 for all ε such that εn = 1. �

Lemma 2.5. Let φ(t) ∈ K[[t]] be a nonzero power series of order n > 0. Then any
power series g(t) ∈ K[[t]] can be expressed in the following form

g(t) =
n−1∑
i=0

ai(φ(t))ti, where ai = ai(x) ∈ K[[x]] for i = 0, . . . , n− 1.

The coefficients ai = ai(x) are uniquely determined by φ(t) and g(t).

Proof. Let us fix g(t) ∈ K[[t]] and put F (x, t) = φ(t)−x. Then we get ordF (0, t) =
ordφ(t) = n and the Weierstrass Division Theorem gives g(t) = q(x, t)F (x, t) +∑n−1
i=0 ai(x)ti. Substituting φ(t) for x we obtain g(t) =

∑n−1
i=0 ai(φ(t))ti. To show

the uniquess it suffices to observe that if we had a relation as above with g(t) = 0
and with some nonzero ai(x), then two terms ai(φ(t))ti and aj(φ(t))tj , i 6= j would
necessarily have the same finite order. This obviously cannot be the case. �

Now we can prove a theorem partialy converse to Theorem 2.1.

Theorem 2.6. For every parametrization (φ(t), ψ(t)) there exists an irreducible
power series f = f(x, y) such that f(φ(t), ψ(t)) = 0. It is determined uniquely by
the parametrization up to a unit of the ring K[[x, y]].

Proof. Suppose that φ(t) 6= 0 and put n = ordφ(t). By Lemma 2.5 we get that
K[[t]] = K[[φ(t)]] + K[[φ(t)]]t + · · · + K[[φ(t)]]tn−1, which implies that the ring
K[[t]] is a finite module over K[[φ(t)]]. Therefore the ring K[[t]] is integral over
K[[φ(t)]]. In particular, the series ψ(t) is integral over K[[φ(t)]] and there exists
f(x, y) ∈ K[[x]][y] monic with respect to y such that f(φ(t), ψ(t)) = 0. Replacing
f(x, y) by its irreducible factor we get the first part of the theorem. The uniqueness
follows from the fact that the ideal I of power series g(x, y) ∈ K[[x, y]] such that
g(φ(t), ψ(t)) = 0 is a prime ideal and it is not maximal since (φ(t), ψ(t)) 6= (0, 0)
(see Appendix C). �

Lemma 2.7. Suppose that the domain A is a subring of the domain B such that
B is a free A-module of rank n > 0. Let K be the field of fractions of A and L the
field of fractions of B. Then (L : K) = n.
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Proof. By assumption there exists a sequence e1, . . . , en of elements of B such that
every element b ∈ B can be written uniquely in the form b = a1e1 + · · · + anen
for some a1, . . . , an ∈ A. In particular B is a finite A-module and consequently
B is integral over A. Therefore for every b ∈ B, b 6= 0 there exists b′ ∈ B such
that bb′ ∈ A \ {0}. In fact if b 6∈ A and bk + a1b

k−1 + · · ·+ ak = 0 is the equation
of integral dependence of minimal degree k > 0 then ak 6= 0 and bb′ = −ak for
b′ = bk−1 + a1b

k−2 + · · ·+ ak−1. Thus every element of the field L may be written
in the form b

a , where a ∈ A \ {0} and b ∈ B. If b = a1e1 + · · · + anen then
b
a =

(
a1
a

)
e1 + · · · +

(
an
a

)
en and (L : K) 6 n. The equality follows from the fact

that e1, . . . , en are linearly independent over K. �

We denote by K((φ(t))) the field of fractions of the domain K[[φ(t)]].

Theorem 2.8. Let (φ(t), ψ(t)) be a good parametrization such that φ(t) 6= 0. Let
n = ordφ(t). Then

(a)
(
K((t)) : K((φ(t)))

)
= n,

(b) K((t)) = K((φ(t)))(ψ(t)).

Proof. By Lemma 2.5 the ring K[[t]] is a free module over K[[φ(t)]] of rank n.
Therefore Property (a) follows from Lemma 2.7. On the other hand by Theorems
2.6 and 2.1 there exists an irreducible power series f = f(x, y) ∈ K[[x, y]] such
that f(φ(t), ψ(t)) = 0 and ord f(0, y) = ordφ(t) = n. Using the Weierstrass
Preparation Theorem we may assume that f is a distinguished polynomial in y of
degree n with coefficients in K[[x]]. Furthermore, f(x, y) is irreducible in K[[x]][y]
and consequently in K((x))[y] since the ring K[[x]] is normal. Thus f(φ(t), y) is

a minimal polynomial of ψ(t) over K((φ(t))) and
(
K((φ(t)))(ψ(t)) : K((φ(t)))

)
=

the degree of f(φ(t), y) in the indeterminate y, which is equal to n =
(
K((t)) :

K((φ(t)))
)

. This shows that K((φ(t)))(ψ(t)) = K((t)). �

For any parametrization (φ(t), ψ(t)) ∈ K[[t]]2 we denote by K((φ(t), ψ(t))) the
field of fractions of the ring K[[φ(t), ψ(t)]].

Theorem 2.9. A parametrization (φ(t), ψ(t)) is good if and only if
K((φ(t), ψ(t))) = K((t)).

Proof. Suppose that φ(t) 6= 0. It is easy to see that K((φ(t)))(ψ(t)) ⊂
K((φ(t), ψ(t))). Therefore if (φ(t), ψ(t)) is good then K((φ(t), ψ(t))) = K((t)) by
Theorem 2.8. Suppose that K((φ(t), ψ(t))) = K((t)) and let τ(t) ∈ K[[t]] be a
power series without constant term such that φ(t) = φ1(τ(t)), ψ(t) = ψ1(τ(t))
for a parametrization (φ1(s), ψ1(s)). Then t ∈ K((φ(t), ψ(t))) ⊂ K((τ(t))), which
implies ord τ(t) = 1. Therefore (φ(t), ψ(t)) is a good parametrization. �

Here is another application of Theorem 2.8.
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Theorem 2.10. There exists a nonzero power series d(t) ∈ K[[φ(t), ψ(t)]] (“a
universal denominator”) such that d(t)K[[t]] ⊂ K[[φ(t), ψ(t)]].

Proof. Suppose that φ(t) 6= 0. Since K((t)) = K((φ(t)))(ψ(t)) is an extension of
K((φ(t))) of degree n, the elements 1, ψ(t), . . . , ψ(t)n−1 form a linear basis of K((t))
over K((φ(t))).

Therefore, we may write

ti = αi,0(φ(t)) + αi,1(φ(t))ψ(t) + · · ·+ αi,n−1(φ(t))ψ(t)n−1,(1)

where i = 0, 1, . . . , n− 1.

Let d(t) ∈ K[[φ(t)]] be a common denominator of the elements αi,j(φ(t)), where
i = 0, 1, . . . , n− 1 and j = 0, 1, . . . , n− 1. The relation (1) implies

d(t)ti ∈ K[[φ(t)]][ψ(t)] for i = 0, 1, . . . , n− 1.(2)

Since K[[t]] = K[[φ(t)]]+ · · ·+K[[φ(t)]]tn−1 by Lemma 2.5 we get by (2) d(t)K[[t]] ⊂
K[[φ(t)]][ψ(t)]. �

3. Intersection multiplicity

Let f = f(x, y) ∈ K[[x, y]] be an irreducible power series. Let us fix a normal-
ization (φ(t), ψ(t)) of the curve f(x, y) = 0. For every g = g(x, y) ∈ K[[x, y]] we
define:

vf (g) = ord g(φ(t), ψ(t)) ∈ N ∪ {∞}.

Proposition 3.1. For any g, g′ ∈ K[[x, y]] the following properties hold:

(i) vf (g) = 0 if and only if g(0) 6= 0, vf (g) = ∞ if and only if f divides g in
K[[x, y]],

(ii) vf (g + g′) > inf{vf (g), vf (g′)}. If vf (g) 6= vf (g′) then the equality holds,
(iii) vf (gg′) = vf (g) + vf (g′),
(iv) vf (g + hf) = vf (g) for h ∈ K[[x, y]].

Proof. To check part (i) note that the ideal I = {h(x, y) ∈ K[[x, y]] : h(φ(t), ψ(t)) =
0} is a prime non-maximal ideal. This implies (see Appendix C) that I = (f) which
proves that vf (g) =∞ if and only if f divides g. The remaining properties follow
directly from the definition. �

Remark 3.2 With every irreducible curve {f = 0} we associate the field Mf of
meromorphic fractions on {f = 0}. For this purpose we consider fractions g

h , where
g, h ∈ K[[x, y]] and h 6≡ 0 mod f . We write g

h ≡
g1
h1

if f divides gh1 − g1h. The
cosets of the relation ≡ form in a natural way a field denotedMf . The function vf
extends to the valuation vf :Mf → Z ∪ {∞} defined by vf

(
g
h

)
= vf (g)− vf (h).

Proposition 3.3 (Basic Inequality). We have vf (g)>( ord f)( ord g). The equality
holds if and only if {f = 0} and {g = 0} don’t have a common tangent.
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We need

Lemma 3.4. Let (φ(t), ψ(t)) be a parametrization, n= inf{ ordφ(t), ordψ(t)} <
∞, φ(t) = atn + · · · , ψ(t) = btn + · · · , where a 6= 0 or b 6= 0. Then for every power
series g = g(x, y) ∈ K[[x, y]]: ord g(φ(t), ψ(t)) > ( ord g)n with equality if and only
if (in g)(a, b) 6= 0.

Proof. (of Lemma 3.4) Let us write g(x, y) =
∑

α+β=m

gαβ(x, y)xαyβ , where m =

ord g and
∑

α+β=m

gαβ(0, 0)xαyβ = in g (“Hadamard’s Lemma”).

We get g(φ(t), ψ(t)) = tmn
∑

α+β=m

gαβ(φ(t), ψ(t))

(
φ(t)

tn

)α(
ψ(t)

tn

)β
=

tmn ((in g)(a, b) + terms of order > 0) which proves the lemma. �

Proof. (of Proposition 3.3) Let (φ(t), ψ(t)) be a normalization of the irreducible
curve f(x, y) = 0. Then inf{ ordφ(t), ordψ(t)} = inf{ ord f(0, y), ord f(x, 0)} =
ord f since f = 0 has exactly one tangent. Let n = ord f , φ(t) = atn + · · · ,
ψ(t) = btn + · · · . Thus a 6= 0 or b 6= 0. Since ord f(φ(t), ψ(t)) = ord 0 = ∞ we
get from Lemma 3.4 that (in f)(a, b) = 0 and consequently the unique tangent to
f = 0 is given by the equation bx− ay = 0.

Now we get vf (g) = ord g(φ(t), ψ(t)) > ( ord g) inf{ ordφ(t), ordψ(t)} =
( ord g)( ord f) by the first part of Lemma 3.4. The equality vf (g) = ( ord g)( ord f)
holds if and only if (in g)(a, b) 6= 0, which takes place exactly when the system of
equations in g = in f = 0 has the unique solution x = 0, y = 0 that is if f = 0 and
g = 0 don’t have a common tangent. �

Proposition 3.5. For any irreducible f, g ∈ K[[x, y]] we get vf (g) = vg(f).

To prove Proposition 3.5 we check the following lemma.

Lemma 3.6. Suppose that f is irreducible, n = ord f(0, y) <∞ and f(α(s), y) ∼∏n
j=1(y − βj(s)) in K[[s]][y]. Then for any g(x, y) ∈ K[[x, y]]:

n∑
j=1

ord g(α(s), βj(s)) = ( ordα(s))vf (g).

Proof. (of Lemma 3.6) Let (φ(t), ψ(t)) be a normalization of the curve f(x, y) = 0.
Then α(s) = φ(σj(s)), βj(s) = ψ(σj(s)) for a power series σj(s), σj(0) = 0.

We get then

n∑
j=1

ord g(α(s), βj(s)) =
n∑
j=1

ord g(φ(t), ψ(t)) ordσj(s) = vf (g)
n∑
j=1

ordσj(s).
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To calculate the last sum let us note that ordα(s) = ordφ(t) ordσj(s) =
n ordσj(s) and consequently

∑n
j=1 ordσj(s) = ordα(s), which proves the lemma.

�

Proof. (of Proposition 3.5) Let f, g ∈ K[[x, y]] be irreducible. Suppose that f, g are
y-general; n = ord f(0, y), p = ord g(0, y). By Corollary 2.3 we get

f(α(s), y) ∼
n∏
j=1

(y − βj(s)),

g(α(s), y) ∼
p∏
j=1

(y − γj(s)).

Using Lemma 3.6 twice we get:

ordα(s) vf (g) =
n∑
j=1

ord g(α(s), βj(s)) =
n∑
j=1

ord

p∏
k=1

(βj(s)− γk(s)) =

=

n∑
j=1

p∑
k=1

ord (βj(s)− γk(s)) =

p∑
k=1

ord f(α(s), γk(s)) = ( ordα(s)) vg(f).

Then vf (g) = vg(f).

Suppose that ord f(0, y) = n < ∞ and ord g(0, y) = ∞. The last conditions
imply that g ∼ x and vf (g) = vf (x) = ordφ(t) = ord f(0, y) = vx(f) = vg(f).

Similarly we check the proposition when ord f(0, y) = ∞ and ord g(0, y) =
p < ∞. If ord f(0, y) = ord g(0, y) = ∞ then f and g are divisible by x and
vf (g) =∞ = vg(f).

Let us note the formula for the order of the resultant of two polynomials.

Proposition 3.7. Let Rf,g(x) be the resultant of two polynomials f(x, y) = yn +
a1(x)yn−1 + · · · + an(x) and g(x, y) = b0(x)yp + b1(x)yp−1 + · · · + bp(x). Assume
that f is irreducible and distinguished. Then

ordRf,g(x) = vf (g).

Proof. By Corollary 2.3 there exist power series α(s), b1(s), . . . , βn(s) ∈ K[[s]]
without constant term such that f(α(s), y) =

∏n
j=1(y − βj(s)). From the def-

inition of resultant we get Rf,g(α(s)) = ±
∏n
j=1 g(α(s), βj(s)) and consequently

ordRf,g(α(s)) =
∑n
j=1 ord g(α(s), βj(s)) = ( ordα(s))vf (g) by Lemma 3.6 and

ordRf,g = vf (g) since ordRf,g(α(s)) = ( ordRf,g) ordα(s). �

Now let f ∈ K[[x, y]] be an arbitrary non-zero power series without constant
term and let f =

∏r
i=1 fi be the decomposition of f into irreducible factors. We

define i0(f, g) =
∑r
i=1 vfi(g). Moreover if f(0) 6= 0 then we put i0(f, g) = 0 and

if f ≡ 0: i0(f, g) = ∞. From the properties of vf (Propositions 3.1, 3.3, 3.5) we
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get the fundamental properties of i0(f, g) (if f(0) = g(0) = 0 then i0(f, g) is called
intersection multiplicity of the curves f = 0 and g = 0).

Proposition 3.8. For any f, g, g′ ∈ K[[x, y]]:

(i) 0 6 i0(f, g) 6∞, i0(f, g) = 0 if and only if f(0) 6= 0 or g(0) 6= 0; i0(f, g) =∞
if and only if f, g have a common factor in K[x, y]],

(ii) i0(f, gg′) = i0(f, g) + i0(f, g′),
(iii) i0(f, g + hf) = i0(f, g) for every h ∈ K[[x, y]],
(iv) i0(f, g) = i0(g, f),
(v) i0(f, g) > ( ord f)( ord g); the equality holds if and only if the curves f = 0

and g = 0 do not have a common tangent.

From Proposition 3.7 we get easily the following:

Proposition 3.9. If f(x, y) = yn + a1(x)yn−1 + · · · + an(x) is distinguished,
g(x, y) = b0(x)yp + b1(x)yp−1 + · · · + bp(x) and Rf,g(x) is their y-resultant, then
ordRf,g(x) = i0(f, g).

We can give here an axiomatic characterization of the intersection multiplicity
(see Ka lużny-Spodzieja [6]).

Theorem 3.10. Let I : K[[x, y]]×K[[x, y]]→ N∪{∞} be a function with properties

(1) I(f, g) = I(g, f),
(2) I(f, g1g2) = I(f, g1) + I(f, g2),
(3) I(f, g) = I(f, g + hf),
(4) I(x, y) 6= 0,∞

Then I(f, g) = i0(f, g)I(x, y).

Clearly properties (1) and (2) imply

(2’) I(f1f2, g) = I(f1, g) + I(f2, g).

To prove Theorem 3.10 we need the following lemma.

Lemma 3.11. If I is a function such as in Theorem 3.10 then the following prop-
erties hold:

(5) if f or g is a unit then I(f, g) = 0,
(6) if f and g have a common divisor of positive order then I(f, g) =∞.

Proof. (of Lemma 3.11) To check property (5) note that using properties (2’) and
(3) we get

I(x, y) = I(1, y) + I(x, y) = I(1, y + (−y)1) + I(x, y) = I(1, 0) + I(x, y)

and

I(1, 0) + I(x, y) = I(1, g + (−g)1) + I(x, y) = I(1, g) + I(x, y).

Using the above equalities we get I(x, y) = I(1, g) + I(x, y) hence I(1, g) = 0 since
I(x, y) 6= 0,∞.
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If f(0) 6= 0 then we have

0 = I(1, g) = I

(
f

(
1

f

)
, g

)
= I

(
g, f

(
1

f

))
= I(g, f) + I

(
g,

1

f

)
.

Hence I(g, f) = 0 and consequently I(f, g) = 0.

To check (6) consider a power series h such that h(0) = 0. We can write
h = xh1 + yh2 in K[[x, y]] and

I(h, 0) = I(h, 0 · x) = I(h, 0) + I(h, x) = I(h, 0) + I(xh1 + yh2, x).

From properties (1) and (3) we get that I(xh1 + yh2, x) = I(yh2, x) and

I(h, 0) = I(h, 0) + I(yh2, x) =

= I(h, 0) + I(y, x) + I(h2, x) = I(h, 0) + I(x, y) + I(h2, x).

Hence I(h, 0) =∞ since I(x, y) 6= 0,∞.

Now suppose that f and g have a common divisor h, h(0) = 0. So we have
f = f1h, g = g1h in K[[x, y]] and we get

I(f, g) = I(f1, g1h) + I(h, g1h) = I(f1, g1h) + I(h, 0) =∞.

�

Remark 3.12 From property (5) it follows that I(f, g) = I(uf, vg) for any units
u, v.

Now we can give the proof of Theorem 3.10.

Proof. (of Theorem 3.10.) If i0(f, g) = ∞ then f and g have a common factor of
positive order and I(f, g) =∞ by property (6).

It suffices to check that if f , g are coprime then I(f, g) = i0(f, g)I(x, y). We
will prove this equality by induction with respect to i0(f, g). If i0(f, g) = 0 then f
or g is a unit and I(f, g) = 0 by property (5).

Let k > 0 be an integer and suppose that the equality I(f, g) = i0(f, g)I(x, y)
is true for every pair f , g such that i0(f, g) < k. If the series f or g is reducible
then the equality I(f, g) = i0(f, g)I(x, y) is true: we use properties (2) and (2’)
of function I and the induction hypothesis. Thus it suffices to consider the case
where f , g are irreducible and i0(f, g) = k. If a power series h is irreducible then
h ∼ x or h ∼ yn + a1(x)yn−1 + · · ·+ an(x), where yn + a1(x)yn−1 + · · ·+ an(x) is
a distinguished polynomial. We have to consider three cases:

(1) f(x, y) = x, g(x, y) = yn + a1(x)yn−1 + · · ·+ an(x) is a distinguished polyno-
mial. Then i0(f, g) = n and I(f, g) = I(x, yn) = nI(x, y) = i0(f, g)I(x, y).

(2) f(x, y) = yn + a1(x)yn−1 + · · ·+ an(x), g(x, y) = x. We use the first case and
symmetry of I, i0.

(3) f(x, y) = yn + a1(x)yn−1 + · · ·+ an(x), g(x, y) = yp + b1(x)yp−1 + · · ·+ bp(x)
are distinguished polynomials of degrees n, p > 0. Without diminishing the
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generality we may suppose that p > n. Then we may write g = yp−nf + xh
in K[[x, y]] and consequently

I(f, g) = I(f, yp−nf + xh) = I(f, x) + I(f, h) = nI(x, y) + I(f, h)

since I(f, x) = nI(x, y) by Case 2.
To finish the proof it suffices to check the formula I(f, h) = i0(f, h)I(x, y).
If h(0) = 0 then this equality follows from the induction hypothesis since
i0(f, h) < i0(f, g) = k. If h(0) 6= 0 then the both sides of this equality are 0.

�

As the first application of the theorem proved above we give the following prop-
erty.

Proposition 3.13. Let f , g be coprime power series without constant term. Then
for any power series Φ,Ψ ∈ K[[u, v]] we have:

i0(Φ(f, g),Ψ(f, g)) = i0(Φ,Ψ)i0(f, g).

Proof. Let us consider the function I given by formula I(Φ,Ψ) =
i0(Φ(f, g),Ψ(f, g)). It is easy to see that the function I satisfies the condi-
tions (1), (2), (3) and (4) of Theorem 3.10. Thus I(Φ,Ψ) = i0(Φ,Ψ)I(u, v) =
i0(Φ,Ψ)i0(f, g). �

For any power series f, g ∈ K[[x, y]] the ideal (f, g) generated by f and g is a
K-linear subspace of the algebra K[[x, y]].

Theorem 3.14 (Macauley’s Formula). For every f, g ∈ K[[x, y]]:

i0(f, g) = dimK
K[[x, y]]�(f, g).

Proof. Let us denote by I(f, g) the right side of the above equality (the codimension
of the ideal generated by f , g). It is easy to see that the function I satisfies (1),
(3) and (4) of Theorem 3.10 and I(x, y) = 1. Thus to check the theorem it suffices
to prove property (2): I(f, g1g2) = I(f, g1) + I(f, g2). If I(f, g1g2) = ∞ then f ,
g1g2 have a common prime divisor (see Appendix B). Then f , g1 or f , g2 have a
common divisor and consequently I(f, g1) =∞ or I(f, g2) =∞.

Suppose that I(f, g1g2) < ∞ i.e. f, g1g2 are coprime. Recall the following fact
of Linear Algebra. If U , V , W are K-linear spaces such that W ⊂ V ⊂ U and W
have a finite codimension in U then

dimK
U�W = dimK

U�V + dimK
V�W .

Applying the above formula to W = (f, g1g2), V = (f, g1) and U = K[[x, y]] we get

I(f, g1g2) = I(f, g1) + I(f, g2) since dimK
V�W = I(f, g2). �

Let f, g ∈ K[[x, y]] be power series without constant term. Let K((f, g)) be
the field of fractions of the ring K[[f, g]]. Then K((f, g)) is a subfield of the field
K((x, y)).
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Theorem 3.15 (Weil’s Formula). If power series f , g without constant term are
coprime then

i0(f, g) =
(
K((x, y)) : K((f, g))

)
.

Proof. By Palamodov’s Theorem (see Appendix D) the extension K[[x, y]] ⊃
K[[f, g]] is a free module of rank dimK

K[[x, y]]�(f, g). Thus Theorem 3.15 follows

from Theorem 3.14 and Lemma 2.7. �

4. Newton diagrams and parametrizations of algebroid curves

In this section we sketch an approach to Newton’s study of plane curve singu-
larities valid in arbitrary characteristic. A lucid and interesting introduction to
Newton’s method is due to Teissier [9]. See also Teissier [10] where a systematic
treatment of the subject is given and Cassou-Noguès, P loski [3] for applications to
invariants of singularities.

Let R+ = {a ∈ R : a > 0}. For any subsets ∆,∆′ ⊂ R2
+ we consider the

Minkowski sum ∆ + ∆′ = {u+ v : u ∈ ∆ and v ∈ ∆′}. For any subset E ⊂ N2 we
denote by ∆(E) the convex hull of the set E + R2

+. The sets od the form ∆(E),

where E ⊂ N2 are called Newton diagrams. We use Teissier’s notation:

{
k

l

}
=

∆({(k, 0), (0, l)}),
{
k

∞

}
= ∆({(k, 0)}) = (k, 0) + R2

+,
{∞
l

}
= ∆({(0, l)}) =

(0, l) + R2
+ for any integers k, l > 0. For any power series f =

∑
cαβx

αyβ ∈
K[[x, y]] we put supp f = {(α, β) ∈ N2 : cα,β 6= 0}. It is easy to check that
supp fg ⊂ supp f + supp g. The Newton diagram ∆x,y(f) of a power series f
is by definition ∆(supp f). Note that if the coordinates (x, y) are generic i.e.

ord f(x, 0) = ord f(0, y) = ord f then ∆x,y(f) =

{
ord f

ord f

}
. The property of order:

ord fg = ord f + ord g may be generalized as follows:

Lemma 4.1. ∆x,y(fg) = ∆x,y(f) + ∆x,y(g).

Proof. The rule of multiplication of formal power series implies the following two
properties:

(a) if (α, β) ∈ supp fg then (α, β) = (α1, β1) + (α2, β2), where (α1, β1) ∈ supp f
and (α2, β2) ∈ supp g,

(b) if (α, β) ∈ N2 has a unique representation (α, β) = (α1, β1)+(α2, β2) for some
(α1, β1) ∈ supp f and (α2, β2) ∈ supp g then (α, β) ∈ supp fg.

To abbreviate the notation we write ∆ instead of ∆x,y. Note first that the set
∆(f)+∆(g) being the sum of two convex subsets of R2

+ is convex. From (a) we get
supp fg + R2

+ ⊂ (supp f + R2
+) + (supp g + R2

+) ⊂ ∆(f) + ∆(g) and consequently
∆(fg) ⊂ ∆(f) + ∆(g) since ∆(fg) is the smallest convex subset which contains
supp fg + R2

+.
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On the other hand if (α, β) is a vertex of ∆(f) + ∆(g) then (α, β) has property
(b) and (α, β) ∈ supp fg ⊂ ∆(fg). Since the vertices of ∆(f) + ∆(g) belong to
∆(fg) we get ∆(f) + ∆(g) ⊂ ∆(fg).

Summing up, we have ∆(fg) = ∆(f) + ∆(g). �

Proposition 4.2. Let f ∈ K[[x, y]] be an irreducible power series. Then

∆x,y(f) =

{
i0(f, y)

i0(f, x)

}
.

Proof. If f ∼ x or f ∼ y then the proposition is obvious. Let f(x, 0)f(0, y) 6= 0 and
put m = ord f(x, 0), n = ord f(0, y). Since ∆x,y(f) = ∆x,y(fu) for any unit u we
may assume by the Weierstrass Preparation Theorem that f = yn + a1(x)yn−1 +
· · · + an(x) is a distinguished polynomial. Let (φ(t), ψ(t)) be a normalization of
the branch f = 0. Then ordφ(t) = i0(f, x) = n and ordψ(t) = i0(f, y) = m. By
Corollary 2.3 there are nonzero power series α(s), β1(s), . . . , βn(s) ∈ K[[s]] without
constant term such that

yn + a1(α(s))yn−1 + · · ·+ an(α(s)) = (y − β1(s)) · · · (y − βn(s)).

We have α(s) = φ(σj(s)), βj(s) = ψ(σj(s)) for a σj(s) without constant term. Thus

we get ordβj(s) = ordψ
ordφ ordα = m

n ordα for j = 1, . . . , n. Let k ∈ [1, n] be such

that ak(x) 6= 0. Then ak(α(s)) = (−1)k(β1(s) · · ·βk(s) + · · · ) and ord ak(α(s)) >
inf{ ordβj1 · · ·βjk : 1 6 j1 < · · · < jk 6 n} = kmn ordα, which implies ord ak

k >
m
n = i0(f,y)

i0(f,x) with equality for k = n. This proves the proposition. �

Now we can pass to the main result of this section

Theorem 4.3. Let f ∈ K[[x, y]] be a nonzero formal power series without con-
stant term and let f = f1 · · · fr in K[[x, y]] with irreducible fi, i = 1, . . . , r. Let
(φi(ti), ψi(ti)) be a normalization of the branch fi = 0 for i = 1, . . . , r. Then

∆x,y(f) =

r∑
i=1

{
ordψi
ordφi

}
.

Proof. By Lemma 4.1 we get ∆x,y(f) =
∑r
i=1 ∆x,y(fi). On the other hand by

Proposition 4.2 and the Normalization Theorem we have ∆x,y(fi) =

{
ordψi
ordφi

}
for

i = 1, . . . , r. �

Appendix

Let K be an arbitrary field not necessarily algebraically closed.
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A. Factorization Lemma. Suppose that a power series f ∈ K[[x, y]] satisfies the
condition in f = φψ, where φ, ψ are coprime homogeneous forms of positive degree.
Then there exist g, h ∈ K[[x, y]] such that f = gh in K[[x, y]], where in g = φ,
inh = ψ.

The proof of the lemma is based on the following property:

Macauley’s property If φ, ψ ∈ K[x, y] are coprime homogeneous forms of degree
m > 0 and n > 0 then every homogeneous form of degree > m + n − 1 can be
written as αφ+ βψ, where α, β are homogeneous forms.

Proof. Every homogeneous form χ of degree > m + n − 1 can be written as∑
i+j=m+n−1

χijx
iyj , so it suffices to check Macaulay’s property for forms of degree

m + n − 1. Let Hk be the K-linear space of homogeneous forms of degree k (by
convention the zero is a homogeneous form of degree k for all k). The mapping

Hn−1 ×Hm−1 3 (α, β) 7→ αφ+ βψ ∈ Hm+n−1

is a linear mapping of vector spaces of the same dimension m+ n. Since the forms
φ, ψ are coprime the mapping is injective. Hence, the mapping is also surjective.
�

Proof of Factorization Lemma. Write f = fm+n + fm+n+1 + · · · . We are looking
for power series g and h in the form g = φm+φm+1 + · · · and h = ψn+ψn+1 + · · · ,
where φm = φ and ψn = ψ. The equality f = gh holds if and only if the following
conditions are fulfilled

φmψn = fm+n

φm+1ψn + φmψn+1 = fm+n+1

φm+2ψn + φm+1ψn+1 + φmψn+2 = fm+n+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Applying Macauley’s property to the given φm = φ, ψn = ψ and utilizing the
above equations, first we find the forms φm+1, ψn+1, then the forms φm+2, ψn+2,....
Proceeding in this way we get step by step the homogeneous components of g and
h. �

B. Elimination Lemma. Let f, g ∈ K[[x, y]] be non-zero power series without
constant term. Then f , g are coprime if and only if the following condition holds

(∗) there exist integers d, d′ > 0 such that the monomials xd, yd
′

lie in the ideal
(f, g) generated by f and g in K[[x, y]].

Proof. If xd, yd
′ ∈ (f, g) then every divisor of f and g divides xd and yd

′
so f , g

are coprime. Suppose that f and g are coprime. Then f(0, y) 6= 0 or g(0, y) 6= 0
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since if f(0, y) = g(0, y) = 0 in K[[y]] then x divides f and g. Suppose that
f(0, y) 6= 0. Using the Weierstrass Preparation Theorem we may assume that
f = yn+a1(x)yn−1 + · · ·+an(x) is a distinguished polynomial. Replacing g by the
remainder of division by f , we get g = b0(x)yn−1 + · · ·+ bn−1(x). Let R(x) be the
y-resultant of polynomials f , g. Then f , g are coprime as elements of K[[x]][y] and
consequently R(x) 6= 0. Let d = ordR(x). We get xd ∈ (f, g) since the resultant

lies in the ideal generated by f and g. Similarly we check that yd
′ ∈ (f, g) for an

integer d′ > 0. �

C. Prime ideals in the ring K[[x, y]]. Prime ideals in the ring K[[x, y]] are: (0),
maximal ideal M = (x, y) and principal ideals (f) generated by irreducible power
series f ∈ K[[x, y]].

Proof. Let I be a non-zero prime ideal of the ring K[[x, y]]. Since the ring of power
series is a unique factorization domain there exists an irreducible power series f ∈ I.
If I 6= (f) then there exists a power series g ∈ I such that f does not divide g
and hence the power series f , g are coprime. By the Elimination Lemma we get
xd, yd

′ ∈ (f, g) ⊂ I which implies x, y ∈ I i.e. I = (x, y) and we are done. �

From the description of prime ideals it follows that the Krull dimension of
K[[x, y]] is equal to 2.

D. Parameters of the ring K[[x, y]]. Every ideal I of the ring K[[x, y]] is a

K-linear subspace of K[[x, y]] and its codimension codim I = dimK
K[[x, y]]�I is

defined. The powers of the maximal ideal Mk = (xk, xk−1y, . . . , xyk−1, yk) have a
finite codimension codimMk = 1

2k(k+1). It is easy to see that codim I <∞ if and

only if I ⊃Mk for some k > 0 i.e. if I contains all monomials of degree big enough.
A pair of power series f , g without constant term is a system of parameters (s.p.)
of the ring K[[x, y]] if the ideal (f, g) has a finite codimension. This takes place if

and only if xd, yd
′ ∈ (f, g) for some d, d′ > 0. Hence, from the Elimination Lemma

it follows that a pair of power series f , g without constant term is a s.p. if and
only if the series f , g are coprime.

Palamodov’s Theorem Let f , g be a s.p. of the ring K[[x, y]]. Then K[[x, y]] is
a finitely generated free module over K[[f, g]] whose rank is equal to the codimension
of the ideal (f, g).

Proof. Let m be the codimension of the ideal I = (f, g) and let e1, . . . , em be
a sequence of power series such that the images of e1, . . . , em under the nat-

ural epimorphism K[[x, y]] → K[[x, y]]�I form a K-linear basis of K[[x, y]]�I .
For any h ∈ K[[x, y]] there exist constants c1, . . . , cm ∈ K such that
h ≡ c1e1 + · · ·+ cmem (mod I). We put A0

i (u, v) = ci for i = 1, . . . ,m. We get
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then

h =
m∑
i=1

ciei + h1f + h2g in K[[x, y]]

and

h1 ≡
m∑
i=1

c1iei mod (f, g),

h2 ≡
m∑
i=1

c2iei mod (f, g).

From the above relations we get:

h ≡
m∑
i=1

ciei +
m∑
i=1

(c1if)ei +
m∑
i=1

(c2ig)ei mod (f, g)2.

Let A1
i (u, v) = ci + c1iu+ c2iv; so we get

h ≡
m∑
i=1

A1
i (f, g)ei mod (f, g)2.

In this way we define by induction the sequences of polynomials Aki = Aki (u, v)
(i = 1, . . . ,m, k = 0, 1, . . . ,m) such that:

(1) h ≡
m∑
i=1

Aki (f, g)ei mod (f, g)k+1,

(2) Aki is a polynomial of degree 6 k; Ak+1
i −Aki is a homogeneous form of degree

k + 1.

Let us put Ai =
∑
k>0

(Ak+1
i −Aki ) + ci for i = 1, . . . ,m. It is easy to show that

h =

m∑
i=1

Ai(f, g)ei.

It remains to check that the above representation is unique. It suffices to prove
that

m∑
i=1

Ai(f, g)ei = 0 ⇒ Ai(u, v) = 0 in K[[u, v]] for i = 1, . . . ,m.

Let us suppose, to get a contradiction, that the set I0 = {i : Ai(u, v) 6= 0} is not
empty. We get ∑

i∈I0

Ai(0, 0)ei ≡ 0 mod (f, g)

hence Ai(0, 0) = 0 for i ∈ I0. Dividing Ai(u, v) by a sufficiently large power of
u we may assume that r = inf{ ordAi(0, v)} < ∞. We get Ai(u, v) = Ai(0, v) +
uqi(u, v) = vrci(v) + uqi(u, v), where not all ci(0) are equal zero.
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So we have
m∑
i=1

grci(g)ei +
m∑
i=1

fqi(f, g)ei = 0

and

gr

(
m∑
i=1

ci(g)ei

)
≡ 0 mod (f).

The power series f , g are coprime because they form a s.p. Therefore from the last
relation we obtain

m∑
i=1

ci(g)ei ≡ 0 mod (f)

and
m∑
i=1

ci(0)ei ≡ 0 mod (f, g)

so we get ci(0) = 0 for all i = 1, . . . ,m, which is a contradiction.

An elementary treatment of parameters in power series ring in n variables is
given in [7].
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ABOUT CHOUIKHA’S ISOCHRONICITY CRITERION

JEAN-MARIE STRELCYN

Abstract. Recently A.R.Chouikha gave a new characterization of isochronic-

ity of center at the origin for the equation x′′ + g(x) = 0, where g is a real

smooth function defined in some neighborhood of 0 ∈ R. We present some
new development of the subject. The present text is a short account of my

paper ”On Chouikha’s isochronicity criterion”, arXiv:1201.6503, where the

proofs can be found. We correct the formulation of some results from the
above paper.

Let us consider the second order differential equation

(1) x′′ + g(x) = 0

where g is a real function defined in some neighborhood of 0 ∈ R such that g(0) = 0,
or equivalently the planar system

(2)
ẋ = y

ẏ = −g(x)

}
.

In what follows we shall exclusively concentrate on the system (2) with function g
at least of class C1.

As g(0) = 0, 0 ∈ R2 is a singular point of the system (2). If in some neighbor-
hood of a singular point all orbits of the system are closed and surround it, then
the singular point is called a center.

A center is called isochronous if the periods of all orbits in some neighborhood
of it are constant.

In future when speaking about isochronicity we always understand it with re-
spect to 0 ∈ R2 and the system (2).

The problem of characterization of isochronicity of the system (2) at 0 ∈ R2 in
term of function g is an old one.

2010 Mathematics Subject Classification. Primary 34C15, 34C25, 34C37.
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To the best of our knowledge the first such characterization was done in 1937
by I.Kukles and N.Piskunov in [3], where even the case of continuous functions g
is considered. The second one was described in 1962 by M.Urabe in [5] (see also
[4]). Unfortunately these characterizations are not easy to handle and they are not
really explicit.

We shall denote

(3) G(x) =

∫ x

0

g(u) du.

Let us denote by X the continuous function defined in some neighborhood of
0 ∈ R by

(4) (X(x))2 = 2G(x) and xX(x) > 0 for x 6= 0.

Let us formulate now Urabe Isochronicity Criterion.

Theorem 1 ([5]). Let g be a C1 function defined in some neighborhood of 0 ∈ R.
Let g(0) = 0 and g′(0) = λ2, λ > 0. Then 0 ∈ R2 is an isochronous center for the
system (2) if and only if

(5) g(x) = λ
X(x)

1 + h(X(x))

where the function X is defined by (4) and where h is a continuous odd function
defined in some neighborhood of 0 ∈ R.

The function h is called Urabe function of the system (2).

Let us note that ω =
2π

λ
is the period of orbits of the above isochronous center.

Let us stress that from (3) and from assumptions on g in Urabe theorem it
follows that G(0) = 0 and that in some punctured neighborhood of 0, G(x) > 0, G
is of class C2. Under our assumptions one proves that X is of class C1. In fact, if
g ∈ Ck, k ≥ 1 (resp. g is real-analytic), then X is of class Ck, X ′(0) = λ > 0 and
h is of class Ck−1 (resp. X and h are real-analytic).

From now on we shall always assume that g ∈ C1(]− ε, ε[)) for some ε > 0 and
that

g′(0) = λ2, λ > 0.

In September 2011 in a highly important paper [1], A.R.Chouikha published
a completely new criterion of isochronicity ([1], Theorem B) which is much more
direct and explicit that all previously known.

Theorem 2 ([1]). Let g ∈ C1(]− ε, ε[) for some ε > 0. Let g(0) = 0 and g′(0) > 0.
If there exists δ, 0 < δ ≤ ε, such that for |x| ≤ δ one has

(6)
d

dx

[
G(x)

g2(x)

]
= f(G(x))
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where f is a continuous functions defined on some interval [ 0, η ], where η > 0,
then 0 ∈ R2 is an isochronous center for the system (2).

If g ∈ C2(]− ε, ε[) and 0 ∈ R2 is an isochronous center for the system (2), then
the condition (6) is satisfied.

Consequently, if g ∈ C2(] − ε, ε[), then 0 ∈ R2 is an isochronous center for the
system (2) if and only if the condition (6) is satisfied.

We shall call the equation (6) the Chouikha equation and the function f is called
Chouikha function of the system (2).

Let us pause now in the history of this theorem. In early February 2010, A.R.
Chouikha communicated to me his first proof of his theorem valid only in real-
analytic setting. Some time after he presented to me the second proof also valid
only in real-analytic setting. The first proof was based on Urabe theorem, the
second one on S.N. Chow and D. Wang [2] formula for the derivative of the first
return map for the system (2). These proofs were not published at the time.
At the beginning of July 2011, A.R. Chouikha and myself, simultaneously and
independently obtained two different proofs of Chouikha theorem in smooth setting.
Both proofs are the adaptation of the previous Chouikha’s proofs in real-analytic
setting. The Chouikha’s proof published in [1] is the adaptation of his second proof.
My proof is the adaptation of his first proof.

As a consequence of this last proof we obtain an unexpected closed relation
between Urabe function h and Chouikha function f .

Theorem 3.

(7) h(s) = λ

∫ s

0

f(
q2

2
)dq,

where g′(0) = λ2, λ > 0. Thusf is real-analytic (resp. of class C∞) if and only if
h is real-analytic (resp. of class C∞).

From now on we shall suppose that f ∈ C1([0, ε]), ε > 0, where in 0 and in ε one
considers the one-sided first derivatives. As before g ∈ C1(]− δ, δ[), δ > 0.

Theorem 4. Let ε > 0 and λ > 0. Let f ∈ C1([0, ε]). There exists δ, 0 < δ ≤ ε
and a unique function g ∈ C1(] − δ, δ[), g′(0) = λ2 such that for every |x| < δ the
Chouikha equation (6)

d

dx

[
G(x)

g2(x)

]
= f(G(x))

is satisfied.

Let us stress that if f1, f2 ∈ C1([0, ε]), ε > 0, and f1 6= f2 on every interval
[0, η], 0 < η ≤ ε, then in any neighborhood of 0 ∈ R, g1 6= g2, where g1 and g2 are
the solutions of Chouikha equation that correspond to f1 and to f2 respectively.

Let us also note that if one supposes that f ∈ Ck([0, ε]), 1 ≤ k ≤ ∞, or f is
real-analytic, then the unique solution g of Chouikha equation is also of the same
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class. This gives a new light on the matter of Sec.4 of [1], proving the convergence
of power series which appear there.

From now on we shall only consider the case of real-analytic or C∞ functions g.
Let us suppose that for function g, 0 ∈ R2 is an isochronous center for the system
(2).

In the real-analytic case there exists a natural bijective correspondence between
the set of the couples of real-analytic functions f defined in some neighborhood of
0 ∈ R and of real numbers λ > 0 with the set of the real-analytic functions g such
that 0 ∈ R2 is an isochronous center for the system (2). Indeed, to real-analytic
function f defined in some neighborhood of 0 ∈ R and to real number λ > 0 we
associate the unique real-analytic function g such that g(0) = 0, g′(0) = λ2 which is
a solution of Chouikha equation, the existence of which is given by Theorem 4. Let
us stress that the completely analogous statement is valid also in C∞ framework.

As a consequence of Theorem 4 and of Theorem 3 we obtain a fact that seems
to have been completely overlooked until now.

Theorem 5. To every odd real-analytic (resp. of class C∞) function h defined in
some neighborhood of 0 ∈ R and to every real number λ > 0 there corresponds a
unique real-analytic (resp. of class C∞) function g defined in some neighborhood
of 0 ∈ R, g(0) = 0, g′(0) = λ2 such that 0 ∈ R2 is an isochronous center for the
system (2) and that h is its Urabe function.

Let us denote by Isochr(0, ω) the germs of isochronous centers of the equation
x′′ + g(x) = 0 where g is a real-analytic function defined in some neighborhood
of 0 ∈ R, g(0) = 0, g′(0) > 0. Let us denote by Cω

0 the germs of real-analytic
functions defined in some neighborhood of 0 ∈ R. We can then state:

Theorem 6. The Cartesian product Cω
0 ×{x ∈ R;x > 0} and the set Isochr(0, ω)

are in natural bijective correspondence. In other words the germs of real-analytic
functions defined in some neighborhood of 0 ∈ R and the strictly positive real num-
bers parametrize the germs of isochronous centers at 0 of equation x′′ + g(x) = 0,
with g a real-analytic function defined in some neighborhood of 0 ∈ R, g(0) =
0, g′(0) > 0.

Let us stress that the completely analogous statement to Theorem 6 is valid also
in C∞ framework.
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JUMPS OF MILNOR NUMBERS

IN FAMILIES OF NON-DEGENERATE

AND NON-CONVENIENT SINGULARITIES

JUSTYNA WALEWSKA

Abstract. The non-degenerate jump of the Milnor number of an isolated
singularity f0 is the minimal non–zero difference between the Milnor numbers

of f0 and one of its non-degenerate deformations (fs). In the paper the results

by Bodin and the author (concerning the non-degenerate jump) are generalized
to non-convenient singularities.

1. Introduction

Let f0 : (Cn, 0) → (C, 0) be an isolated singularity, i.e. f0 is the germ of
a holomorphic function having an isolated critical point at 0. In the sequel a
singularity means an isolated singularity.

A deformation of f0 is a family (fs)s∈U of isolated singularities (or smooth
germs) analytically dependent on the parameter s in an open neighborhood U of
0 ∈ C. Let µ(fs) denote the Milnor number of fs. By the upper semi-continuity of
µ(fs) with respect to the Zariski topology [see [4], Prop. 2.57] the difference

µ(f0)− µ(fs), s 6= 0,

is non-negative and independent of s 6= 0 in a sufficiently small neighborhood of
0 ∈ C. We call it the jump of Milnor numbers of the deformation (fs)s∈U and
denote λ((fs)).

The jump λ(f0) (or the first jump) is the minimum of non-zero jumps over all
deformations (fs) of f0. Gusein-Zade proved in [3] that there exist singularities
f0 for which λ(f0) > 1 and that for irreducible plane curve singularities it holds
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λ(f0) = 1. The paper concerns the non-degenerate jump of the Milnor number i.e.
the case when deformations (fs) consist of only non-degenerate singularities. First,
we recall the needed notions.

Put N = {0, 1, 2, . . .}. Let

f0(x, y) =
∑

(i,j)∈N2

aijx
iyj ∈ C{x, y}.

Put

supp(f0) := {(i, j) ∈ N2 : aij 6= 0}.
The Newton diagram of f0 is the convex hull of⋃

(i,j)∈supp(f0)

(
(i, j) + R2

+

)
, where R2

+ = {(x, y) ∈ R2 : x ≥ 0 ∧ y ≥ 0}.

We will denote it by Γ+(f0). The boundary of the Newton diagram Γ+(f0) is the
union of two semilines and a finite set (may be empty) of compact, non-parallel
segments. These segments constitute the Newton polygon of f0, which we will
denote by Γ(f0). They can be ordered in a natural way from the highest segment
(closest to the vertical axes) to the lowest one. Often we will identify pairs (i, j) ∈
N2 with monomials xiyj . The singularity f0 is convenient, if Γ(f0) has common
points with OX and OY axes.

For a segment γ ∈ Γ(f0) we define

(f0)γ :=
∑

(i,j)∈γ

aijx
iyj .

A singularity f0 is non-degenerate on γ ∈ Γ(f0) (in the Kouchnirenko sense), if the
system of equations

∂(f0)γ
∂x

(x, y) = 0,
∂(f0)γ
∂y

(x, y) = 0

has no solutions in C∗ × C∗. We call a singularity f0 non-degenerate, when f0 is
non-degenerate on every segment γ ∈ Γ(f0).

Let f0 be a convenient singularity. By S we denote the area of the set bounded
by OX and OY axes and the polygon Γ(f0). By a and b we denote the distances
between the origin (0, 0) and the common part of Newton polygon Γ+(f0) with
OX and OY axes, respectively.

We define the Newton number of f0 by

ν(f0) := 2S − a− b+ 1.

Let f0 be a singularity. A deformation (fs)s∈U of f0 is called non-degenerate if
fs is non-degenerate for every s 6= 0 sufficielntly close to the origin. We will denote
by Dnd(f0) the set of all non-degenerate deformations of the singularity f0. The
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non-degenerate jump λ′(f0) of a singularity f0 is the minimum of non-zero jumps
over all non-degenerate deformations (fs) of f0, i.e.

λ′(f0) := min
(fs)∈Dnd

0 (f0)
λ((fs)),

where by Dnd0 (f0) we denote all the non-degenerate deformations (fs) of f0 for
which λ((fs)) 6= 0.

Now, we recall some results on the jump of convenient and non-degenerate sin-
gularities, which we will generalize to the non-convenient case. First, we define
specific deformations of a convenient non-degenerate singularity f0. Let J(f0) be
the set of integer points (monomials) lying under the Newton polygon of f0 except
(0, 0). For any (p, q) ∈ J(f0) we define a deformation

fs(x, y) = f0(x, y) + sxpyq, s ∈ C,

and denote it by (f
(p,q)
s ).

Theorem 1 (Bodin [1], Walewska [10]). If f0 is a non-degenerate and convenient
singularity, then

λ′(f0) = min
(p,q)∈J0(f0)

λ((f (p,q)s )),

where J0(f0) ⊂ J(f0) is the set of points (p, q) ∈ J(f0) such that λ((f
(p,q)
s )) 6= 0.

Directly from the above theorem we have

Corollary 2. If f and f̃ are two non-degenerate and convenient singularities, with
the same Newton diagram, then λ′(f) = λ′(f̃).

Using Theorem 1 Bodin gave the exact value of the non-degenerate jump of
some singularities.

Theorem 3 (Bodin [1]). Let f0(x, y) = xp − yq, where p ≥ q ≥ 2 and let
d=GCD(p, q).

1. If d < q, then λ′(f0) = d.
2. If d = q, then λ′(f0) = d− 1.

In the first case the jump λ′(f0) is realized by the deformation f
(−b,q−a)
s , where

a, b ∈ Z are such that ap + bq = d, where 0 < a <
q

d
and b < 0. Moreover, the

point (−b, q − a) lies in an open triangle with vertices (0, q), (0, 0) and (p, 0).

In the second case the jump is realized by the deformation f
(p−1,0)
s .

Consider now a general case of a convenient and non-degenerate singularity
f0, whose Newton polygon consists of only one segment. Let (p, 0) and (0, q) be
the intersection points of the Newton polygon of f0 with the axes OX and OY ,
respectively. From Corollary 2 and Theorem 3 we have the following



144 JUSTYNA WALEWSKA

Theorem 4. Let f0 be a non-degenerate and convenient singularity, with the New-
ton polygon reduced to only one segment. Then this segment connects points (p, 0)
and (0, q) for some p, q ∈ N such that p, q ≥ 2. If d := GCD(p, q), then:

1. If 1 ≤ d < min(p, q), then λ′(f0) = d,
2. If d = min(p, q), then λ′(f0) = d− 1.

Let f0 be a non-degenerate and convenient singularity. Let

Λ′(f0) = (µ0, µ1, . . . , µk)

be the strictly decreasing sequence of all possible Milnor numbers of all non-
degenerate deformations (fs) of f0. In particular,

µ0 = µ(f0), µ1 = µ(f0)− λ′(f0), µk = 0.

From Theorem 4 we have a formula for µ1 if f0 is a singularity with one segment
Newton polygon (in particular for irreducible f0). The sequence Λ′(f0) may be
strange. One can check that

1. for f0(x, y) = x8 − y5, we have Λ′(f0) = (28, 27, . . . , 0),
2. for f0(x, y) = x8 − y4, we have Λ′(f0) = (21, 18, 17 . . . , 0),
3. for f0(x, y) = x7 − y5, we have Λ′(f0) = (24, 23, . . . , 15, 13, 12, . . . , 0).

Next theorem gives a formula for µ2 for singularities with one segment Newton
polygon.

Theorem 5 (Walewska [10]). Let f0(x, y) = xp − yq, p ≥ q ≥ 2, p+ q > 4. Then
µ2 = µ1 − 1, if µ2 is defined.

Consider now a general case of a singularity which Newton polygon consists of
only one segment. From Corollary 2 and Theorem 5 we have the following

Theorem 6. Let f0 be a non-degenerate and convenient singularity whose Newton
polygon consists of only one segment. If Λ′(f0) = (µ0, µ1, . . . , µk), k ≥ 2, is the
sequence of Milnor numbers associated to f0, then µ2 = µ1 − 1.

The main goal of this paper is to extend the above results to the case of non-
convenient singularities.

2. Non-convenient singularities

A power series f0 ∈ C{x, y} is nearly convenient, if the distance of the Newton
diagram Γ+(f0) to each axis of the coordinate system does not exceed 1. It is easy
to notice that

Lemma 2.1. If f0 is a singularity, then f0 is nearly convenient.

Let f0 be a singularity. Then f0 is either convenient singularity or can be
represented in one of the following forms
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xf̃1, yf̃2, xyf̃3, (?)

where f̃1 and f̃2 can be smooth germs or a convenient singularity and f̃3 can be
an invertible or a smooth germ or a convenient singularity. First, we consider the
simplest cases when f̃i is not a convenient singularity.

Lemma 2.2. Let f0 be a singularity of one of the form listed in (?). Assume that

f̃i is not a convenient singularity. Then λ′(f0) = 1 and µ2 = µ1 − 1, when µ2 is
defined.

Proof. Consider the possible cases:

1. f0 = xf̃1, where f̃1 is a smooth germ and y - f0. Then

a) if ordf̃1(0, y) = 1, then we easily check that µ(f0) = 1. This means that
λ′(f0) = 1 and µ2 is undefined.

b) if ordf̃1(0, y) =: k > 1, then µ(f0) = 2k−1 and for the deformations fs(x, y) =

f0(x, y) + sy2k−1 and f̃s(x, y) = f0(x, y) + sy2k−1 + sxyk−1 we have µ(fs) = 2k− 2

and µ(f̃s) = 2k − 3 for s 6= 0. Hence λ′(f0) = 1 and µ2 = µ1 − 1.

2. f0 = yf̃2, where f̃2 is a smooth germ and x - f0. We proceed similarly to case 1.

3. f0 = xyf̃3. Then

a) if f̃3 is an invertible series, then we easily check that µ(f0) = 1. This means
that λ′(f0) = 1 and µ2 is undefined.

b) if f̃3 is a smooth germ then we proceed similarly to case 1. �

Let f0 be a singularity. In the sequel we will assume that f̃1, f̃2, f̃3 in (?) are
convenient singularities. Denote by (ai, bi), i = 0, . . . , k + 1 and γi, i = 0, . . . , k,
the consecutive vertices and segments of the Newton polygon Γ(f0), respectively.

Let Lγ0 and Lγk be the lines that include the segments γ0 = (a0, b0), (a1, b1) and

γk = (ak, bk), (ak+1, bk+1), respectively. It may happen that Lγ0 = Lγk .

Denote by (r, 0) and (0, t) the points of intersection of the lines Lγk and Lγ0
with the axes OX and OY , respectively. Of course, the coordinates r and t do not
have to be integers.

If a0 = 0, then the point (a0, b0) will be denoted by (0, b). Similarly, if bk+1 = 0,
then the point (ak+1, bk+1) will be denoted by (a, 0). We will denote by J(f0) the
set of all monomials xpyq, where p+ q ≥ 1, lying in the closed domain bounded by
the axes OX, OY and by the set

conv
{
{(r, 0), (0, t), supp(f0)}+ R2

+

}
.

Note that for a convenient singularity the definition of the set J(f0) agrees with
the one given in Section 1.

We associate to a singularity f0 a convenient one f con0 defined by
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f con0 :=


f0, if f0 is a convenient singularity

f0 + xm, if f0 is of the form yf̃1
f0 + yn, if f0 is of the form xf̃2
f0 + xm + yn, if f0 is of the form xyf̃3

where m and n are sufficiently large natural numbers.

It is easy to show that the Newton number of f con0 does not depend on the choice
of sufficiently large numbers m and n. So, we may define the Newton number of
f0 by

ν(f0) := ν(f con0 ).

We have the following formulas for the Newton number (see [7]).

Property 7. Let f0 be a singularity.

1. If f0 is a convenient singularity (see Fig. 1a)), then ν(f0) = 2S−a− b+1.

2. If f0 can be written as xf̃1, where f̃1 is a convenient singularity (see Fig.
1b)), then ν(f0) = 2S − a+ b0 + 1.

3. If f0 can be written as yf̃2, where f̃2 is a convenient singularity (see Fig.
1c)), then ν(f0) = 2S + ak+1 − b+ 1.

4. If f0 can be written as xyf̃3, where f̃3 is a convenient singularity (see Fig.
1d)), then ν(f0) = 2S + ak+1 + b0 − 1.

Figure 1. All possible variants of the Newton diagram of a nearly
convenient singularity

From Kouchnirenko Theorem we have that if f0 is a non-degenerate singularity,
then µ(f0) = ν(f0).

We prove that for any non-degenerate singularity f0 there exists a deformation

(f
(p,q)
s ), where (p, q) ∈ J(f0), which realizes the jump λ′(f0).

Theorem 8. If f0 is non-degenerate, then

λ′(f0) = min
(p,q)∈J0(f0)

λ((f (p,q)s )),
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where J0(f0) ⊂ J(f0) is the set of points (p, q) such that λ((f
(p,q)
s )) 6= 0.

Proof. Let f0 be a non-degenerate singularity. Then f0 can be represented in one
of the forms

f̃0, xf̃1, yf̃2, xyf̃3,

where x - f̃0, y - f̃0, y - f̃1, x - f̃2. Note that it suffices to consider the cases when

f̃0, f̃1, f̃2, f̃3 are convenient singularities because the other cases are included in the
Lemma 2.2. We will consider cases:

1. f0 = f̃0. This means that the singularity is convenient and we may directly
apply Theorem 1.

2. Suppose that f0 = xf̃1, where f̃1 is a non-degenerate and convenient singularity.
Denote by (ai, bi), i = 0, . . . , k+ 1, the consecutive vertices of the Newton polygon
Γ(f0). We have to prove

min
(fs)∈Dnd

0 (f0)
(µ(f0)− µ(fs)) = min

(p,q)∈J0(f0)
λ((f (p,q)s )).

The inequality ,,≤” is obvious. We will prove the opposite inequality. For
sufficiently large n we have

min
(fs)∈Dnd

0 (f0)
(µ(f0)− µ(fs)) = min

(fs)∈Dnd
0 (f0)

(µ(f0 + yn)− µ(fs + yn)).

Take any deformation (fs) ∈ Dnd0 (f0). Put gs := fs+yn. Then gs are convenient
and (gs) ∈ Dnd0 (f0 + yn) and µ(f0 + yn) − µ(fs + yn) = µ(f0 + yn) − µ(gs). We
have

min
(fs)∈Dnd

0 (f0)
(µ(f0 + yn)− µ(fs + yn)) ≥ min

(hs)∈Dnd
0 (f0+yn)

(µ(f0 + yn)− µ(hs))
Th.1
=

= min
(p,q)∈J0(f0+yn)

(µ(f0 + yn)− µ(f0 + yn + sxpyq)) =

= min
(p,q)∈J0(f0)∪J′

0

(µ(f0 + yn)− µ(f0 + yn + sxpyq)),

where J ′0 is the set of points (0, l), where l ∈ (t, n], for which λ((f
(p,q)
s )) 6= 0. We

claim that J ′0 = ∅. Suppose to the contrary that J ′0 6= ∅. So there exists a point
(p, q) ∈ J ′0. Then (p, q) = (0, l), for some l ∈ (t, n]. It is easy to check µ(f0 + yn) =

µ(f0 + yn + syl), which contradicts the assumption that (f
(0,l)
s ) ∈ Dnd0 (f0). So

min
(p,q)∈J0(f0)∪J′

0

(µ(f0 + yn)− µ(f0 + yn + sxpyq)) =

= min
(p,q)∈J0(f0)

(µ(f0 + yn)− µ(f0 + yn + sxpyq)) =

= min
(p,q)∈J0(f0)

(µ(f0)− µ(f0 + sxpyq)).

3. In cases f0 = yf̃2 i f0 = xyf̃3 we proceed similarly to case 2. �
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3. The first jump of Milnor numbers

As for the non-degenerate and convenient singularities, we can give the exact
value of the non-degenerate jump of some singularities. It happens that the Newton
polygon of f0 consists of only one segment. The following theorem extends Theorem
3 to the case of non-convenient singularities. It turns out that the formulas do not
transfer automatically from convenient cases. There are new subcases.

Theorem 9. Let f0(x, y) = xiyj(xp−yq), where i, j ∈ {0, 1}, p ≥ q ≥ 2, p+ q ≥ 5
and let d = GCD(p, q).

1. If d < q, then λ′(f0) = d.

2. If d = q and i = 0 and j = 1, then λ′(f0) =

{
d, for q 6= p,
d− 1, for q = p.

3. If d = q and i = 1 and j = 1, then λ′(f0) = d.
4. If d = q and j = 0, then λ′(f0) = d− 1.

Proof. Ad 1. Theorem 3, p. 1. implies that for the singularity f̃0(x, y) = xp − yq
there exists a point P , which lies in the triangle with vertices (0, q), (0, 0), (p, 0) and

realizes the jump λ′(f̃0). According to the form of the singularity f0 we consider
the following cases.

a) i = j = 0. Then f0 is a convenient singularity and from Theorem 3 we have
λ′(f0) = d.

b) i = 1 and j = 0. Translate the Newton diagram of f̃0 together with the point
P by the vector [1, 0]. Using Property 7 p. 2. we easily check, that the point
P ′ := P + [1, 0] realizes the jump equal to d.

Note that there exists no point P ′′ realizing a smaller jump than d. From
Theorem 3, p. 1. we have that none of the points which lie on the axis OX realizes
the jump smaller than d. We check, that for the points of the form (0, k), where

k ∈ N and k ∈ (0, t) we have λ((f
(0,k)
s )) ≥ d. In fact, by assumption p > q we have

|t−q| < 1 (see Fig. 2). Moreover, Property 7, p. 2. implies that λ((f
(0,q)
s )) = q > d

and λ((f
(0,q)
s )) < λ((f

(0,k)
s )), where k ∈ (0, q).

We check now that, for the points of the form (1,m), where m ∈ N and m ∈ (0, q)

we get λ((f
(1,m)
s )) ≥ d. From Property 7, p. 2. λ((f

(1,q−1)
s )) = p + 1 > d and

λ((f
(1,q−1)
s )) < λ((f

(1,m)
s )), where m ∈ (0, q − 1) (see Fig. 2). This implies that

λ′(f0) = d and this jump is realized by a point P ′.

c) i = 0 and j = 1. Translate the Newton diagram of f̃0 together with the point P
by the vector [0, 1]. From Property 7, p. 3. we have that the point P ′ = P + [0, 1]
realizes the jump λ′(f0) = d. Similarly to b) we easily check that, there exists no
point which realizes the jump smaller than d.

d) i = j = 1. This follows from b) and c).
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Figure 2. f0(x, y) = x(xp − yq)

Ad 2. d = q, i = 0 and j = 1. In this case r ∈ N and r = p +
p

q
(see Fig. 3).

Consider the cases:

a) Let q 6= p. Note that λ((f
(r−1,0)
s )) = d. It is sufficient to check that there exists

no point realizing the jump smaller than d.

Figure 3. f0(x, y) = y(xp − yq)

From Property 7, p. 3. λ((f
(p−1,1)
s )) = q+1 > d and λ((f

(0,q)
s )) = p−1 > d (see

Fig. 3). Moreover λ((f
(k,0)
s )) > λ((f

(r−1,0)
s )), if k ∈ (0, r − 1) and λ((f

(m,1)
s )) >

λ((f
(p−1,1)
s )), if m ∈ (0, p− 1) (see Fig. 3).

Moreover, Theorem 3, p. 2. implies that for the singularity f̃0(x, y) = xp − yq
every point P which lies inside the triangle with vertices (0, q), (0, 0), (p, 0) realizes

the jump bigger or equal to d. If we translate the Newton diagram of f̃0 by the
vector [0, 1], then from Property 7, p. 3. we get, that every point P ′ lying inside
the triangle with vertices (0, q + 1), (0, 1), (p, 1) realizes the jump bigger than d.
So λ′(f0) = d.

b) If p = q, then λ((f
(0,q)
s )) = d−1. In this case r = q+1. Similarly to a) we check

that there exists no point which realizes the jump smaller than d− 1.

Ad 3. d = q, i = 1 and j = 1. Consider similarly to case 2.

Ad 4. Consider the cases:
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a) d = q, i = 0 and j = 0. Then from Theorem 3 we have λ′(f0) = d− 1.

b) d = q, i = 1 and j = 0. Note that λ((f
(p,0)
s )) = d−1. It is sufficient to check that

there exists no point realizing the jump better than d− 1. In fact, the assumption
p ≥ q implies that |t− q| ≤ 1 (see Fig. 4).

Figure 4. f0(x, y) = x(xp − yq)

We have λ((f
(0,q)
s )) = q > d − 1 and λ((f

(1,q−1)
s )) = p + 1 > d − 1 (see Fig.

4). Property 7, p. 2. implies that λ((f
(0,k)
s )) > λ((f

(0,q)
s )) for k ∈ (0, q) and

λ((f
(1,m)
s )) > λ((f

(1,q−1)
s )) for m ∈ (0, q − 1). Moreover, for singularity f̃0(x, y) =

xp − yq each point P lying inside the triangle with vertices (0, q), (0, 0), (p, 0)
realizes the jump bigger than d−1. Hence and from Property 7, p. 2. we have that
if we translate f̃0 by the vector [1, 0] then we get that each point P ′ lying inside
the triangle with vertices (1, q), (1, 0), (p+1, 0) realizes the jump bigger than d−1.
Hence λ′(f0) = d− 1. �

From Lemma 2.2, Corollary 2 and Theorem 9 we have the following

Theorem 10. Let f0 be a non-degenerate singularity, with the Newton polygon
reduced to at most one segment. Then f0(x, y) = xiyj f̃0, where i, j ∈ {0, 1} and

f̃0 ∈ C{x, y} is a convenient power series. If f̃0 smooth or invertible then λ′(f0) =

1. If f̃0 is a convenient singularity, which Newton polygon Γ(f̃0) has vertices at
points (p, 0) and (0, q), d := GCD(p, q) and p ≥ q, then

1. If d < q, then λ′(f0) = d.

2. If d = q, i = 0 and j = 1, then λ′(f0) =

{
d, for q < p,
d− 1, for q = p.

3. If d = q, i = 1 and j = 1, then λ′(f0) = d.
4. If d = q and j = 0, then λ′(f0) = d− 1.

4. The second jump of Milnor numbers

Let f0 be a non-degenerate singularity. Just as in the Introduction, we can con-
sider the strictly decreasing sequence (µ0, µ1, . . . , µk) of all possible Milnor numbers
of all non-degenerate deformations (fs) of f0. In this case, we have results similar
to the ones in the convenient case.
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Theorem 11. Let f0 be a singularity of the form f0(x, y) = xiyj(xp − yq), i, j ∈
{0, 1}, p ≥ q. Then µ2 = µ1 − 1, if µ2 is defined.

Proof. For i = 0, j = 0 the assertion follows from Theorem 5. Note that if xp−yq
is not a singularity (i.e. q = 1) then the assertion follows from Lemma 2.2. If
xp − yq is a singularity we consider the case i = 1 or j = 1.

I. q - p. Let us consider the subcases:

1. i = 1, j = 0. In this case we can repeat the argument of the proof of Theorem
5, p. 2. in [10] translating the whole configurations by the vector [1, 0]. Hence we
get µ2 = µ1 − 1.

2. i = 0, j = 1. It suffices to consider only the case q = 2 because in the remaining
cases we may repeat the argument from the proof of Theorem 5, p. 2 in [10]. Let

q = 2. The fact q - p implies
3(p− 1)

2
∈ N.

Figure 5. f0(x, y) = y(xp − y2)

Moreover, for the point (c, 0) := ( 3(p−1)
2 +1, 0) (see Fig. 5) we have λ(f

(c,0)
s ) = 1.

Of course GCD(c, 3) = 1 hence from Theorem 3, p. 1. there exists a point lying
inside the triangle with vertices (0, 3), (0, 0), (c, 0) realizing the jump 2 = λ′(f0)+1.
Hence µ2 = µ1 − 1.

3. i = 1, j = 1. It follows from 2.

II. q | p. Let us consider the subcases:

1. i = 1, j = 0. We have:

(i) p = q = 2. Then f0(x, y) = x(x2 − y2). It is easy to check that the point (2, 0)
realizes the jump equal to 1, while the deformation fs(x, y) = f0(x, y) + sx2 + sy3

realizes the jump equal to 2 = λ′(f0) + 1. Hence µ2 = µ1 − 1.

(ii) p+ q > 4, q ≥ 2. We repeat the argument from the proof of the Theorem 5, p.
1. in [10]. Hence and from Property 7 we have the assertion.

2. i = 0, j = 1. We have:

a) q 6= p. From Theorem 9 we have λ′(f0) = d and the deformation f
(r−1,0)
s realizes

this jump, where r ∈ N, r = p+
p

q
(see Fig. 6). Note that GCD(r − 1, q + 1) = 1.

From Theorem 3, p. 1., there exists a point (α, β) lying inside the triangle with
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vertices (0, q + 1), (0, 0), (r − 1, 0) realizing the jump equal to 1 for f(x, y) =
xr−1 − yq+1.

Figure 6. f0(x, y) = y(xp − yq)

Therefore, the deformation fs(x, y) = f0(x, y)+sxr−1 +sxαyβ realizes the jump
d+ 1 = λ′(f0) + 1.

b) q = p. Let us consider the subcases:

i) p = q = 2. Then f0(x, y) = y(x2 − y2). It is easy to check that the point (0, 2)
realizes the jump equal to 1, while the deformation fs(x, y) = f0(x, y) + sx3 + sy2

realizes the jump 2 = λ′(f0) + 1. Hence µ2 = µ1 − 1.

ii) p = q > 2. From Theorem 9 λ′(f0) = d−1 and this jump is realized by the point
(0, q). Note that GCD(q, q − 1) = 1. From Theorem 3, p. 1. there exists a point
(α, β) lying inside the triangle with vertices (0, q− 1), (0, 0) and (q, 0) realizing the
jump equal to 1 for f(x, y) = xq − yq−1.

Figure 7. f0(x, y) = y(xq − yq)

If we translate the diagram of f(x, y) = xq− yq−1 (with the point (α, β)) by the

vector [0, 1] (see Fig. 7) we get the singularity f̃(x, y) = xqy − yq and the point

(α′, β′) such that the deformation fs(x, y) = f0(x, y) + syq + sxα
′
yβ

′
realizes the

jump (d− 1) + 1 = d = λ′(f0) + 1.

3. i = j = 1. Similarly to 2. �
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From Lemma 2.2, Corollary 2 and Theorem 11 we have the following

Theorem 12. Let f0 be a non-degenerate singularity with the Newton polygon
reduced to at most one segment. If Λ′(f0) = (µ0, µ1, . . . , µk), k ≥ 2, is the sequence
of Milnor numbers associated to f0, then

µ2 = µ1 − 1,

provided µ2 is defined.
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MULTIPLE ZETA VALUES AND THE WKB METHOD

MICHA L ZAKRZEWSKI AND HENRYK ŻO LA̧DEK

Abstract. The multiple zeta values ζ(d1, . . . , dr) are natural generalizations

of the values ζ(d) of the Riemann zeta functions at integers d. They have
many applications, e.g. in knot theory and in quantum physics. It turns

out that some generating functions for the multiple zeta values, like fd(x) =

1 − ζ(d)xd + ζ(d, d)x2d − . . . , are related with hypergeometric equations.
More precisely, fd(x) is the value at t = 1 of some hypergeometric series

dFd−1(t) = 1 − xdt + . . ., a solution to a hypergeometric equation of degree
d with parameter x. Our idea is to represent fd(x) as some connection coeffi-

cient between certain standard bases of solutions near t = 0 and near t = 1.

Moreover, we assume that |x| is large. For large complex x the above basic so-
lutions are represented in terms of so-called WKB solutions. The series which

define the WKB solutions are divergent and are subject to so-called Stokes

phenomenon. Anyway it is possible to treat them rigorously. In the paper we
review our results about application of the WKB method to the generating

functions fd(x), focusing on the cases d = 2 and d = 3.

1. Introduction

We study the following hypergeometric equations

(1.1) (1− t)∂(t∂)d−1g + xdg = 0,

where ∂ = ∂t = ∂/∂t, with one solution in form of the hypergeometric series (see
[BE1])1

2010 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
Key words and phrases. Multiple zeta values, hypergeometric differential equations, WKB

expansion.
Supported by Polish OPUS Grant No 2012/05/B/ST1/03195 and by Polish-French PHC

POLONIUM 2013 PROJECT No 28217 SG.
1Recall the standard formula pFq(α1, . . . αp;β1, . . . , βq ; t) =

∑∞
n=0

(α1)n...(αp)n
(β1)n...(βq)nn!

tn where

(α)n = α(α + 1) . . . (α + n − 1) is the known Pochhammer symbol. Eq. (1.1) can be found in

[Zud1] and [Zo2]
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ϕ1(t;x) = dFd−1(−ς0x, . . . ,−ςd−1x; 1, . . . , 1; t)(1.2)

= 1− xdt+ (−xd)
(
1− xd

)
t2/(2!)d + . . .

here

(1.3) ς = e2πi/d

is the primitive root of unity of degree d (other solutions ϕ2, . . . , ϕd are given in
Section 3.1). For d = 1 we have the simple (and unique solution) ϕ1 = (1− t)x , so
this case is not interesting.

But when the degree of the equation is greater, d ≥ 2, then something interesting
happens. It turns out that the solution (1.2) evaluated at t = 1 is a generating
function for so-called multiple zeta values (MZV’s, see [Zag1])2

(1.4) ζ(d1, . . . , dk) =
∑

0<n1<...<nk

1

nd11 . . . ndkk
, dj ≥ 1, dk ≥ 2.

Namely,

(1.5) ϕ1(1;x) = fd(x)

where fd is the following generating function:

(1.6) fd(x) = 1− ζ(d)xd + ζ(d, d)x2d − . . .
(see [Zo2] and Section 3 below).

It is easy to show the formula

(1.7) fd(x) =

∞∏
n=1

(
1−

(x
n

)d)
which implies, in particular, that

(1.8) f2(x) =
sinπx

πx
.

But for odd degrees we do not have similar formulas. Since the R. Apery’s work
[Ap] we know that the number ζ(3) is irrational, but it is not known whether it is
algebraic or not. Due to formula (1.8) below we assume that:

(1.9) d = 2 or d > 2 is odd.

The idea of this paper and of [Zo2, ZZ1, ZZ2, ZZ3] is to express the solution
(1.2) in suitable basis (θ1, . . . , θd) of solutions near t = 1;

ϕ1 = A1(x)θ1 + . . .+Ad(x)θd.

The basis near t = 1 is such that θj |t=1 = 0 for j = 1, . . . , d − 1 and θd|t=1 is a
known nonzero number. Therefore it is enough to find the coefficient Ad(x) before
θd. The coefficients Aj(x) are analytic functions in x ∈ C�0, with only possible

2In some sources the sum in Eq. (1.4) is denoted ζ(dk, . . . d1).
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singularities at x = 0 and at x = ∞ (see Sections 3). So there appears an idea to
consider behavior of the solutions when the parameter x becomes large.

For large |x| there exist some special solutions of the form

g ∼ xγexS(t)
{
χ0(t) + χ1(t)x−1 + . . .

}
,

known as the WKB solutions. Here the ‘action’ S(t) and the amplitudes χj(t)
satisfy some ODEs which are easy to integrate. There exist basic WKB solutions

gσ(t;x) ∼ exp(σxSd(t)) with Sd(t) =
∫ t

0
τ1/d−1(1 − τ)−1/ddτ and σ = ςj+1/2

(j = 0, . . . , d − 1) to Eq. (1.1) (see Section 4). One would like to represent the
solutions ϕ1 and θj in the WKB basis. To this aim one could use some integral
representations of the solutions ϕ1 and θj and then to evaluate the corresponding
integrals, which are of oscillatory type, using the stationary phase formula (see
[Fed, He]).

This approach is tempting but it encounters serious obstacles. One of them is
the question of uniqueness of the series defining the WKB solutions. The functions
χj(t) satisfy an infinite series of ODEs and an infinite number of constants of
integration of these equations has to be determined. In Definition 1 (in Section
4.1) we define so-called testing WKB solutions gσtest by choosing some arbitrary
procedure of fixing the integration constants. But it is not the right choice. In
Section 4.2 we define so-called normal WKB solutions gσnorm which are more natural,
because they are obtained via some normalization procedure (i.e. a diagonalization)
of a corresponding linear first order differential system and this procedure is unique.

But the main difficulty arises from the fact that the series defining the WKB
solutions are divergent. It turns out that one can define analytic WKB solutions
by applying an analytic version of the normalization procedure (see Section 4.3),
but the domains of definition of the latter solutions are quite small: for 0 < t < 1
the parameter x lies in a sector in C with vertex at x =∞. Moreover, the analytic
normalization requires solving some integral equation and the solutions obtained
are not unique.

In Section 5 we develop a new approach in the asymptotic analysis of linear
differential equations like Eq. (1.1). For t near 0 we approximate Eq. (1.1) with

so-called Bessel type equation ∂y (y∂y)
d−1

G+G = 0 for G(y) where y = x3t (see
Eq. (5.3)). Similarly, for s = 1− t close to 0 we have an approximation by another
Bessel type equation (Eq. (5.5)) for H(z), where z = xdsd−1. These Bessel type
equations have only two singular points: regular at y = 0 (respectively at z = 0)
and irregular at y = ∞ (respectively at z = ∞). In Theorem 1 we prove that
the hypergeometric equation (1.1) for g(t;x) near t = 0 is analytically equivalent
with the corresponding Bessel type equation for G(y) and that the corresponding
equation for h(s;x) = g(1−s;x) near s = 0 is analytically equivalent with the Bessel
type equation for H(z). The Bessel type equations admit uniquely defined WKB

type solutions Gσ(y) ∼ edσy1/d for y →∞ and Hσ ∼ e(d/(1−d))σz1/d for z →∞. In
Section 5.3 we define so-called principal WKB solutions gσprinc and hσprinc as images
of the WKB solutions Gσ and Hσ using the above analytic equivalences.
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To represent the solution ϕ1(t;x) (defined by the hypergeometric series (1.2)) in
the basis

(
gσprinc

)
one expresses this hypergeometric function via a contour integral

(in Section 6.1). This is an oscillatory type integral (or a mountain pass integral).
It is evaluated asymptotically as x→∞ using well known stationary phase formula
(or the mountain pass formula).

For the degree d = 2 one can write down suitable integral representations for
the basic solutions θ1(s;x) and θ2(s;x) near s = 1 − t = 0. The corresponding
stationary phase formula allows to represent θj in the basis

(
hσprinc

)
. Because the

relation between the bases
(
gσprinc

)
and

(
hσprinc

)
is given by a diagonal matrix (at

least formally) it is possible to give new proofs of the formula (1.8). We give two
proofs, one in Section 6.3 and another one in Section 7.2.1.

However, here we must underline that the existence of the integral formulas for
θ1,2 in the case d = 2 follows from the formula θj(s) = −s∂sϕj(s), which is a
consequence of so-called self-duality for the MZV’s ζ(2, . . . , 2) (see Eqs. (2.8)–(2.9)
and Lemma 3 below).

In the case of odd d > 2 there are no integral formulas for the basic solutions
θj , j = 1, . . . , d. But we can find such formulas for corresponding solutions Θj(z)
(to the Bessel type equation) which approximate the solutions θj . Evaluating these
integrals, using the mountain pass formula for large |z|, one finds expansions of the
functions Θj in the basis (Hσ) . Next, one uses the equivalence of the hypergeo-
metric and the Bessel equations near s = 0 to expand θj in the principal WKB
basis

(
hσprinc

)
. We do it for the case d = 3.

The WKB solutions Gσ (respectively Hσ) are subject to so-called Stokes phe-
nomenon. It relies upon the property that the formal solutions Gσ are asymptotic
expansions of some genuine analytic solutions Gσj , defined in some sectors Sj , but
in intersection of two adjacent sectors the relation between the corresponding bases
is given by so-called Stokes matrix (which is not identical). This explains the di-
vergence of the series defining Gσ and is responsible for the unpleasant fact that
the coefficients in the expansion of the function Φ1(y) (approximating ϕ1) given by
the stationary phase formula are not exact. More precisely, only the dominating

terms const·edσy1/d , as |y| → ∞ and arg y is fixed, are correct. Other terms are
determined by an analysis leading to computation of the Stokes matrices. The
same is true for the WKB solutions Hσ and representations of Θj(z) in terms of
(Hσ) for |z| → ∞ and fixed arg z. This is done in Section 7.1.

In Section 7.2 we apply the above theory to get a representation

Ad(x) =
∑

aσ · Fσ(x)

for the connection coefficient before θd in the representation of ϕ1 in the basis (θj) .
Here Fσ(x) are functions of WKB type. For d = 2 we prove that the functions Fσ

are single valued, i.e. the corresponding Stokes operators are trivial.
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For d = 3 we have

Fσ = ±x−3/2e2πσx/
√

3ωσ(x−1/2)

which are subject to a nontrivial Stokes phenomenon. Moreover, their monodromy,
as x makes a turn around ∞, is nontrivial (due to the factor x−3/2). This implies
that the function A3(x) is a solution of a meromorphic sixth order linear equation
with irregular singularity at x =∞ (Theorem 2).

Since the function A3(x) is entire (and holomorphic at x = 0) it is quite plausible
that the equation satisfied by Fσ’s has regular singularity at x = 0. Then this
equation should take the following form

f (V I) + c1x
−1f (V ) + c2x

−2f (IV ) +
(
c3 + c4x

−3
)
f (III) +

(
c5x
−1 + c6x

−4
)
f (II)

+
(
c7x
−2 + c8x

−5
)
f (I) +

(
c9 + c10x

−3 + c11x
6
)
f = 0

where c3 = 2
(
2π/
√

3
)3
, c9 =

(
2π
√

3
)6

and other coefficients cj are computable

(most probably are expressed in an algebraic way via π and
√

3). But then the
coefficients bk = (−1)kζ(3, . . . , 3) in the expansion f3 =

∑
bkx

3k should satisfy a
recurrent relation, hence all the zeta values ζ(3, . . . ., 3) are expressed via ζ(3) and
ζ(3) would satisfy an algebraic equation with coefficients depending on the cj ’s.
We plan to calculate the coefficients cj in a separate paper.

Sections 2 of the paper is devoted to presentation of some basic facts about
MZV’s and about their relations with hypergeometric series.

2. MZV’s, polylogarithms and hypergeometric series

The Multiple Zeta Values (MZV’s) ζ(d1, . . . , dk) are defined in Eq. (1.4). Any
such quantity has its weight d = d1 + . . . + dk, depth equal k and height h =
] {i : di > 1} .

They form a graded algebra, where the grading is defined by the weight. Indeed,
we can rewrite the product of two infinite sums( ∑

n1<...<nk

)( ∑
m1<...<ml

)
in the product ζ(d1, . . . , dk)ζ(e1, . . . , el) as a finite sum corresponding to different
orderings of the index set {n1, . . . , nk,m1, . . . ,ml} . The corresponding identity is
sometimes called the first shuffle product. For example, we have

(2.1) ζ(2)ζ(2) = 2ζ(2, 2) + ζ(4)

which implies ζ(4) = π4/90. It was Euler who used this sort of shuffle relations to
prove that ζ(2k) = π2k×(rational number).

Important is the problem of calculation of the dimension Dd of the space Zd
(over the field Q) generated by the MZV’s of weight d. There exists a conjecture
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(see [Zag1]) that these dimensions satisfy the recursion Dd = Dd−2 + Dd−3 (with
D0 = 1 and Dd = 0 for d < 0). This is equivalent to the property∑

Ddt
d =

1

1− t2 − t3
.

M. Hoffman [Hof] conjectured that the algebra of MZV’s is generated by special
values of the form ζ(d1, . . . , dk) with dj ∈ {2, 3} . This conjecture was recently
proved by F. Brown [Bro]; in the proof some explicit relations between the values
ζ(2, . . . , 2), ζ(2r + 1) and ζ(2, . . . , 2, 3, 2, . . . , 2) (proved by D. Zagier [Zag2]) are
used.

There exists the following Kontsevich–Drinfeld formula ([KoZa]) for the
MZV’s. Let

(2.2) ω0(t) = dt/t, ω1(t) = dt/(1− t)

be two 1−forms. For given d1, . . . , dk we define the d−form

Ωd1,...,dk = ω0(td1+...+dk) . . . ω0(td1+...+dk−1+2)ω1(td1+...+dk−1+1)(2.3)

. . . ω0(td1) . . . ω0(t2)ω1(t1);

there are k forms ω1 with arguments t1, td1+1, . . . , td1+...+dk−1+1. Next, we integrate
it over the simplex {0 ≤ t1 ≤ . . . ≤ td ≤ 1} :

(2.4) ζ(d1, . . . , dk) =

∫
0≤t1≤...≤td≤1

Ωd1,...,dk .

For example, we have3

(2.5)

∫
0≤t1≤t2≤1

dt2
t2

dt1
1− t1

=
∑
n≥1

1

n

∫ 1

0

tn−1
2 dt2 =

∑ 1

n2
= ζ(2).

The latter formula is generalized to the generalized polylogarithms

(2.6)
Lid1,...,dk(t) =

∑
0<n1<n2<...<nk

tnk/nd11 . . . ndkk
=

∫
0≤t1≤...≤td≤t Ωd1,...,dk .

It implies another shuffle multiplication. The product(∫
t1≤...≤td≤t

)(∫
s1≤...≤se≤t

)

3Such integrals appear as coefficients in some knot invariants and in evaluation of some Feyn-

mann integrals in quantum physics.
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of integrals is represented as a finite sum of integrals according to the ordering of
the variables set {t1, . . . , td, s1, . . . , sd} . For example, we have

Li2(t)Li1(t) =

(∫
0≤t1≤t2≤t

dt2dt1
t2(1− t1)

)(∫ t

0

dt3
1− t3

)
(2.7)

=

(
2

∫
0≤t1≤t3≤t2≤t

+

∫
0≤t1≤t2≤t3≤t

)
dt2dt3dt1

t2(1− t3)(1− t1)

= 2Li1,2(t) + Li2,1(t).

The second shuffle formula leads to an interesting shuffle algebra (see [MPH,
Zud1]), but there is no place to describe its details.

The Drinfeld–Kontsevich formula (2.4) leads to the following MZV duality.
Namely, we put s1 = 1− td, . . . , sd = 1− t1; thus ωεj (tj) = ω1−εj (1− sd−j+1) and
we get

(2.8) ζ(1, . . . 1,m1 +2, . . . , 1, . . . , 1,mr+2) = ζ(1, . . . 1, nr+2, . . . , 1, . . . , 1, n1 +2)

where the sequences of 1’s have lengths nj in the left-hand side and mr−j+1 in the
right hand side. We observe that the quantities

(2.9) ζ(2, . . . , 2) and ζ(1, 3, . . . , 1, 3)

are invariant with respect to the MZV duality. We have also the formula

(2.10) ζ(3) = ζ(1, 2)

which is proved in many ways in the literature.

There exist interesting generating functions which imply series of relations be-
tween MZV’s. One of them is following (see [BBB]):

(2.11)
∑
m,n≥0

xm+1yn+1ζ(m+2, 1, . . . , 1) = 1−exp

∑
k≥2

xk + yk − (x+ y)k

k
ζ(k)


where the sequence of 1’s has length n.

Some of the generating series are expressed via hypergeometric functions. In the
next example we put

G(d, k, h) =
∑

ζ(d1, . . . , dk),

where in the sum the weight d = d1 + . . . + dk, the depth k and the height h =
] {i : di > 1} are fixed and dk ≥ 2. Let also α and β satisfy

α+ β = x+ y, αβ = z.

Then we have the following identity for

Φ(x, y, z) =
∑

G(d, k, h)xd−k−hyk−hzh−1
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(see [OhZa]):

Φ =
1

xy − z
{1− 2F1(α− x, β − x; 1− x; 1)}(2.12)

=
1

xy − z

1− exp

∑
n≥2

xn + yn − αn − βn

n
ζ(n)

 .(2.13)

This result was generalized in [AOW] and [Li]. Specializing Eq. (2.13) to xy = z
one obtains the formula

(2.14)
∑
d,k,h

G(d, k, h)xd−k−1yk−1 =
∑

ζ(d)xd−k−1yk−1.

In particular,

(2.15)
∑

d1+...+dk=d

ζ(d1, . . . , dk) = ζ(d)

where the depth k is fixed. For k = 2 the latter identity is known as the Euler
formula.

We note also the following Borwein formula for the generating function f1,3(x) =
1− ζ(1, 3)x4 + ζ(1, 3, 1, 3)x8 − . . . :

(2.16) f1,3(x) = f4

(
x/
√

2
)

which follows from a corresponding identity for generating functions for polyloga-
rithms (see [KoZa], [BBBL]). This formula was conjectured by D. Zagier in [Zag1].

It was conjectured in [BBB] and proved in [Zhao] that

(2.17) ζ(3, . . . , 3) = 8k · ζ(1, 2̄, . . . , 1, 2̄)

where

(2.18) ζ(1, 2̄, . . . , 1, 2̄) =
∑

0<m1<n1<...<mk<nk

(−1)n1+...+nk

m1n2
1 . . .mkn2

k

is so-called alternating Euler sum. The generating function for the latter values

(2.19) f1,2̄,...,1,2̄(x) =
∑

ζ(1, 2̄, . . . , 1, 2̄) · (−x3)k

is related with the following sixth order equation:

(1− t)∂(1− t)∂t∂(1 + t)∂(1 + t)∂tt∂tg − x6g = 0.

Namely, this equation has two solutions analytic near t = 0 and of the form ϕ1 = 1+

O(x6) and ϕ2 =
∑

0<m<n
(−t)n
mn2 +O(x6). Then f1,2̄,...,1,2̄(x) = ϕ1(1;x)−x3ϕ2(1;x).

The Zhao’s result implies that f1,2̄,...,1,2̄(x) = f3(x/2) =
∏(

1−
(
x
2n

)3)
.

Some hypergeometric series are also used in irrationality proofs of some zeta
values. Here we refer the reader to the exemplary papers [CFR, Zud2, Hut].
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We finish this section by noticing that some third order linear differential equa-
tions, similar to Eq. (1.1) for d = 3 were considered by F. Beukers with C. Peters
in [BePe] and by S.-T. Yau with B. Lian in [LYau]. In [BePe] the equation

(t4 − 34t3 + t2)∂3z + (6t3 − 153t2 + 3t)∂2z + (7t2 − 112t+ 1)∂z + (t− 5)z = 0,

which is directly related with the recurrence used by R. Apéry in his proof of
irrationality of ζ(3) (see [Ap], [vPo]), turns out to be a Picard–Fuchs equation for
periods of some K3 surface. In [LYau] the authors consider equations of the form(

(t∂)
3 − t

(
3∑
i=1

ri (t∂)
i

))
z = 0;

they are Picard–Fuchs equations for a one-parameter deformations of K3 surfaces
and are used in the mirror symmetry property for K3 surfaces. However the choice
of parameters rj used in [LYau] is different than in Eq. (1.1)d=3.

3. Two bases of solutions

3.1. Basic solutions near t = 0. Recall that we consider Eq. (1.1). The hyper-
geometric function (1.2) is one of the basic solutions. We may represent it as a
series in powers of xd with coefficients depending on t. Also other solutions can be
written in the form g = φ(t;x) = φ0(t)−φ1(t)xd +φ2(t)x2d− . . . , where the coeffi-

cient functions satisfy the series of equations: (t∂)
d
φ0 = 0 and (t∂)

d
φk = t

1−tφk−1

for k ≥ 1. The first equation has d independent solutions which we can choose in
the following form:

(3.1) ϕ1,0(t) = 1, ϕ2,0 = ln
(
xdt
)
, . . . , ϕd,0 =

1

(d− 1)!
lnd−1

(
xdt
)

(this special choice is justified in Section 5). The other equations are solved as
follows:

(3.2) φk(t) =

∫
0<td...<t1<t

dt1
t1

. . .
dtd−1

td−1

dtd
1− td

φk−1(td).

It is easy to see that the coefficients φk decrease very fast with k (like 1/k!), so the
obtained solutions are analytic functions in xd ∈ C�0 with known singularities at
x = 0.

The above implies that the basic solutions to Eq. (1.1) are of the form

(3.3) ϕj(t;x) = ϕj,0(t)− ϕj,1(t)xd + ϕj,2(t)x2d − . . . , j = 1, . . . , d,

with ϕj,k given by the integral recurrence (3.2). They can be rewritten as follows:

(3.4)

ϕ1 = 1 +O(t),
ϕ2 = ϕ1 ln

(
xdt
)

+ ψ2,

ϕ3 = 1
2!ϕ1 ln2(xdt) + ψ2 ln(xdt) + ψ3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕd−1 = 1
(d−1)!ϕ1 lnd−1

(
xdt
)

+ . . .+ ψd−1 ln(xdt) + ψd
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where ϕ1, ψ2, . . . , ψd are analytic in t near t = 0. (The above form of the basic
solutions can be explained by the defining equation λd = 0 for the leading exponents
in the solutions φ = tλ + . . . .)

Of course, for us the principal is the first of these solutions. Using the Drinfeld–
Kontsevich formula (2.6) we find

ϕ1,2(t) =

∫
0<td...<t1<t

dt1
t1

. . .
dtd−1

td−1

dtd
1− td

=
∞∑
n=1

∫
0<td...<t1<t

dt1
t1

. . .
dtd−1

td−1
tn−1
d dtd =

∑ tn

nd
= Lid(t),

i.e. a polylogarithm. Other coefficient functions ϕ1,k are also expressed via poly-
logarithms and we have

ϕ1 = 1− Lid(t)x
d + Lid,d(t)x

2d − . . . ,

which implies formula (1.5).4

Remark 1. Other solutions ϕ2, . . . , ϕd also admit expressions in terms of hy-
pergeometric series. For example, in the case d = 2 we can take the following
perturbation of Eq. (1.1): t

{
(1− t)∂tt∂tg + x2g

}
− µ2g = 0 with small parameter

µ (see [ZZ1]). It has the solutions ηµ and η−µ, where ηµ = Γ(1+x+µ)
Γ(1+x−µ)Γ(1+2µ) · t

µ ·
F (µ+ x, µ− x; 1 + 2µ; t),and therefore

ϕ̂2 = lim
µ→0

(ηµ − η−µ) /2µ

is a solution to Eq. (1.1)d=2 with the logarithmic term (arising from tµ ≈ 1+µ ln t).

Since Γ(1+x+µ)
Γ(1+x−µ)Γ(1+2µ) ≈ 1 + 2µ(Ψ(1 + x) − Ψ(1)), where Ψ denotes the Euler

Psi function and Ψ(1) = −γ is the Euler–Mascheroni constant, it follows that
ϕ̂2 = ϕ2 + 2(Ψ(1 +x) + γ− lnx) ·ϕ1 and the analytic part of the solution ϕ2 equals
ψ2 = ∂

∂µF (µ+ x, µ− x; 1 + 2µ; t)|µ=0.

Moreover, from the expansions Ψ(1 + x) = −γ + ζ(2)x − ζ(3)x2 + ζ(4)x3 − . . .
(see [BE1, Eq. 1.17(5)]) and π

tanπx = 1
x − 2ζ(2)x− 2ζ(4)x3 − . . . (compare [BE1,

Eq. 1.20(3)] we get ϕ̂2(1;x) = − cosπx
x + 1

xf2(x). It implies that the function

ϕ̌2 = ϕ̂2 − x−1 · ϕ1

is a solution to Eq. (1.1), independent with ϕ1 and such that

ϕ̌2(1;x) = −cosπx

x
.

4Also other series ψj appearing in the formulas for ϕj are generating functions for some

polylogarithms. For instance, in [ZZ1] it is proved that in the case d = 2 we have ϕ2,k =

Li2,...,2(t) ln(x2t) − 2
∑k
j−1 Li2,...,3,...,2(t), where only one index in Li equals 3. After a simple

resummation one finds ϕ2(1;x) = 2f2(x) lnx+ 2x2f2(x)
{
ζ(3) + ζ(5)x2 + ζ(7)x4 + . . .

}
. However

we should not regard the latter identity as something important.

Also the below solutions θj are expressed via the polylogarithms and ln s.
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In the case of higher order equations (d > 2) the perturbation relies on adding a
differential operator of lower order with d− 1 small parameters.

3.2. Basic solutions near t = 1. With the variable s = 1− t Eq. (1.1) takes the
form

(3.5) s∂s(1− s)∂s . . . (1− s)∂sg + (−1)dxdg = 0.

Analogously as in Section 3.1 we consider solutions of the form g(1−s) = θj(s;x)
such that

(3.6)
θj = (−xd/(d−1))j

{
θj,0(s) + θj,1(s)xd + . . .

}
, (j = 1, . . . , d− 1),

θd = θd,0(s) + θd,1(s)xd + . . .

where

(3.7) θj,0 =
1

j!
lnj(1−s) = Li1,...,1(s), (j = 1, . . . , d−1), θd,0 = 1−d+θd−1,0 lnxd

and

(3.8) θj,k(s) =

∫
0<sd...<s1<s

ds1

1− s1
. . .

ds2

1− sd−1

dsd
sd

θj,k−1.

It is clear that these solutions are analytic in x ∈ C�0 with known singularities at
the origin.

Their behavior near s = 0 is following:

(3.9)
θj(s;x) = 1

j!

(
xd/(d−1)s

)j
+O(sd) (j = 1, . . . , d− 1),

θd(s;x) = θd−1 ln
(
xdsd−1

)
+ (1− d) +O(s).

(compare [ZZ1, ZZ3]).

3.3. Some relations between the two bases. Firstly, we underline the follow-
ing property which follows directly from independence of the two systems ϕ =

(ϕ1, . . . , ϕd)
>

and θ = (θ1, . . . , θd)
>

of solutions (see [ZZ3]).

Lemma 1. The matrix M = M(x) defined by θ = Mϕ is an analytic function of
x ∈ C�0 with regular singularity at x = 0.

Also the following obvious statement is important in this paper.

Lemma 2. Let

ϕ1(t;x) = A1(x) · θ1(1− t;x) + . . .+Ad(x) · θd(1− t;x)

be the representation of ϕ1(t;x) near t = 1 in the basis θ (with the connection coef-
ficients Aj). Then the generating function (1.6) is expressed via the last connection
coefficient,

fd(x) = (1− d) ·Ad(x).
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In the case of standard hypergeometric equation of second order we have the
following property which is proved by direct checking.

Lemma 3. Let d = 2. Then, if ϕ(t;x) is a solution to Eq. (1.1), then θ(s;x) =
−s∂sϕ(s;x) is a solution to Eq. (3.5). In particular, we have

θ1,2(s;x) = −s∂sϕ1,2(s;x).

This lemma will be used below in explanation of the formula (1.8) for f2(x). On
the other side, it has simple explanation in terms of the MZV duality relations.

Together with Eq. (1.1) one can consider the following equation:

(3.10) [(1− t)∂t]d−1
t∂tg + xdg = 0.

It has one solution of the form

φ1(t;x) = 1− Li1,...,1,2(t)xd + Li1,...,1,2,1,...,,2(t)x2d − . . .

(where each sequence of 1’s is of length d − 1) and hence φ1(1;x) = f1,...,1,2(x) =
1−ζ(1, . . . , 1, 2)xd+. . . is a generating function for multiple zeta values ζ(1, . . . , 1, 2
. . . 1, . . . , 1, 2). But the MZV duality (see Eq. (2.8)) implies that the latter numbers
equal ζ(d, . . . , d). Therefore

φ(1;x) = fd(x)

is the generating function for ζ(d, . . . , d) from Eq. (1.6). Of course, for d =
2 it is nothing new, because the values ζ(2, . . . , 2) are fixed under the duality
transformation.

There exists another relation between Eqs. (1.1) and (3.10). Namely,

if ϕ(t;x) is a solution to Eq. (1.1) near t = 0 then for s = 1 − t ≈ 0 the

function ϑ(s;x) = (s∂s)
d−1

ϕ(s;−x) is a solution to Eq. (3.10) near t = 1 but for
the parameter x replaced with −x, i.e. to the equation

(s∂s)
d−1

(1− s)∂sg + (−x)dg = 0.

4. WKB solutions

Theoretically Eq. (1.1) for large parameter x can be solved using the WKB
method. This means that one represents a solution as a finite sum of terms of the
form

(4.1) xγexS(t)
{
χ0(t) + χ1(t)x−1 + . . .

}
.

In general the series in the above formula are divergent, but this divergence can
be somehow controlled. Below we present three approaches to the WKB solutions
to Eq. (1.1): formal, via normal forms and using the stationary phase formula (in
Section 6).
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The name of the method comes from the names of its authors G. Wentzel [Wen],
H. Kramers [Kr] and L. Brillouin [Bri]. Originally it was used to solve approxi-
mately the Schrödinger equation [Sch], but here we use it to the hypergeometric
equation.

4.1. Testing WKB solutions. These are solution of the form

(4.2) g(t;x) = xγexS(t)χ(t;x−1),

where χ is a power series in x−1. Substituting it into equation (1.1) we get

(4.3) xd
{

(1− t)td−1
(
Ṡ
)d

+ 1

}
χ+ xd−1 1− t

t
P1χ+ . . .+

1− t
t
Pdχ = 0,

where Ṡ = dS/dt and Pj are some differential operators and the first of them is
following:

(4.4) P1χ = d ·
(
tṠ
)d−2

·
{
t∂S · t∂χ+

d− 1

2
(t∂)2S · χ

}
.

It follows that the ‘action’ S(t), the solution to the ‘Hamilton–Jacobi equation’

(4.5) (1− t)td−1
(
Ṡ
)d

+ 1 = 0,

equals

(4.6) S = σSd(t) := σ

∫ t

0

dτ

τ (d−1)/d(1− τ)1/d
, σ = ςj+1/2, j = 0, . . . , d− 1,

where ς is the root of unity from Eq. (1.3). These d possibilities correspond to d
solutions, which can be expanded as follows

(4.7) gσtest(t;x) = (σx)
γ
eσxSd(t)

{
χ0(t)− χ1(t)

σx
+
χ2(t)

(σx)
2 . . .

}
, γ = −d− 1

2
.

The functions χj satisfy the ‘transport equations’

P1χ0 = 0, P1χ1 = P2χ0, . . .

where in definition of Pj we use S = Sd. The first transport equation is easy: we

have χ0 =const·
(
tṠd

)(1−d)/2

. We choose it in the form

(4.8) χ0(t) =

(
1− t
t

)(d−1)/2d

.

To solve the other equations one introduces the new variable

(4.9) u =

(
t

1− t

)1/4

for d = 2 and u =

(
t

1− t

)1/d

for odd d ≥ 3;

thus χ0(t) = u−1 (d = 2) or χ0(t) = u(1−d)/2 (odd d ≥ 3). The following result
was proved in[ZZ1] for d = 2 and in [ZZ3] for d = 3 but it holds in general case.



168 MICHA L ZAKRZEWSKI AND HENRYK ŻO LA̧DEK

Lemma 4. The functions χj(t), j > 1, can be chosen as Laurent polynomials in

u, such that the term with u−1 (respectively u(1−d)/2) is absent.5

For example, when d = 2 we have

χk+1(t) = (Tχk)(u) =
1

8u

∫ u 1

v
∂u
(
v(1 + v4

)
∂uχk)dv.

This gives

(4.10) χ1 = −
(
u−3 + 3u

)
/16, χ2 = 3(3u−5 − 5u3)/83.

A general algebraic formula can be obtained using the functions ωk(u) = (2k −
1) u−2k−1 + (−1)k+1(2k + 1) · u2k−1, k = 1, 2, . . . , which satisfy the recurrent

relations: Tω1 = − 3·1
8·4ω2, Tωk = − 4k2−1

8

{
ωk+1

k+1 −
ωk−1

k−1

}
. It follows that χk(t) =

ak,kωk(u) + ak,k−2ωk−2(u) + . . . , for some coefficients ak,l which are calculated
inductively. The latter coefficients grow very fast with k; for instance, we have

ak,k = (2k − 1) (−1/8)
k−1

((2k − 3)!!)2/(2k − 2)!!.

Definition 1. The formal expressions

gσtest(t;x) ∼ eσxSd(t)

(σx)
(d−1)/2

·
(

1− t
t

)(d−1)/2d

,

σ = ςj+1/2, j = 0, . . . , d − 1, defined in equation (4.7) with the coefficients χj(t)

defined as above (without u−1 or u(1−d)/2 for j > 1) are called the testing WKB
solutions associated with t = 0.

We introduce also another system of testing WKB solutions associated with
s = 1− t = 0 :

hσtest(s;x) = ξσ(σx)d/2e−σxSd(1) · gσtest(1− s;x)(4.11)

∼
√
−σx · e−σx(Sd(1)−Sd(1−s)) ·

(
s

1− s

)(d−1)/2d

,

where ξσ ∈ S1.

Above we agree that for 0 < t < 1 and arg x = 0 we take:6

g± ∼ exp√
±ix

= e∓iπ/4
exp√
x
, h± ∼

√
x

±i
exp = e∓iπ/4

√
x exp

5The general solution to the system of transport equations contains infinitely many constants,
to each particular solution χj(t) we can add cjχ0(t) for a constant cj . It the case of Schrödinger

equation one avoids analogous problem of arbitrary constants of integration by assuming that the
wave functions (representing bound states of a quantum system) vanish at infinity; that restriction
leads to so-called Born–Sommerfeld quantization condition (see [Sch]).

6In [ZZ1] the notations g+
0 and g−0 for gitest and g−itest, i = eiπ/2, are used. In [ZZ3] one uses

the notations g−0 , g
ε
0, g

ε̄
0 for gσtest, σ = −1, ε = eiπ/3, ε̄. Also for hσtest analogous notations are used.
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for d = 2 and

gσ ∼ exp

σx
, h− ∼

√
x exp, hε = ε̄

√
x exp, hε̄ ∼ ε

√
x exp,

(σ = −1, ε, ε̄) for d = 3.

4.2. Formal reduction to normal form. Here we present an alternative way
to derive WKB type solutions to equations with a parameter like Eq. (1.1). The
obtained basic WKB solutions gσnorm differ from the testing WKB solutions gσtest

from Definition 1 by factors which depends on x. There are reasons to regard the
new solutions are more natural than the testing solution.

In the presentation we describe only the simplest case d = 2. Here we will use
the notations g± (see Note 6).

Putting

(4.12) g1 = g, g2 = ġ/x

we rewrite Eq. (1.1) in form of the following first order system

d

dt

(
g1

g2

)
= A(t;x)

(
g1

g2

)
,

where

A = xA1(t) +A0(t), A1 =

(
0 1

1/t(t− 1) 0

)
, A0 =

(
0 0
0 −1/t

)
.

The normal form of such system is a diagonal (or independent) system obtained
by means of a formal linear change which depends on t.

The first step is the diagonalization of the matrix A1(t) with the eigenvalues

(4.13) λ±1 (t) = ±i/
√
t(1− t) = ±i · Ṡ2(t).

We put

(4.14) X+ = λ+
1 (t)g1 + g2, X− = λ−1 (t)g1 + g2

and we get

(4.15)
Ẋ+ = λ+

1 (t)xX+ − 1
4

(
3
t −

1
1−t

)
X+ − 1

4

(
1
t + 1

1−t

)
X−,

Ẋ− = λ−1 (t)xX− − 1
4

(
1
t + 1

1−t

)
X+ − 1

4

(
3
t −

1
1−t

)
X−.

The general theory says that such system can be diagonalized by means of an
infinite series of ‘shearing’ transformations. Let us apply some initial changes, in
order to compare the obtained (partial) normal form with the results of the previous
and next subsections. We put

(4.16) X+ = X+
1 +

(
b1
x

+
b2
x2

+ . . .

)
X−1 , X− =

(c1
x

+
c2
x2

+ . . .
)
X+

1 +X−1 ,

where bj , cj depend on t, and we expect to obtain the following separated system

(4.17) Ẋ+
1 = λ+(t;x)X+

1 , Ẋ−1 = λ−1 (t;x)X−1 ,
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λ±(t;x) = λ±1 (t)x+ λ±0 (t) + λ±−1(t)x−1 + . . .

The resulted system of equations onto bj , cj , λ
±
j is easily solved; moreover, in

algebraic way. Using the variable u = (t/(1− t))1/4
(see Eq. (4.9)) we get b1 =

−c1 = −i/8 (t(1− t))1/2
= −i(1 + u4)/8u2, b2 = c2 = (1− 2t) /32t(1 − t) =(

1− u8
)
/32u4 and λ±0 = ∓ 1

4

(
3
t −

1
1−t

)
, λ±−1 = ∓i/32 (t(1− t))3/2

= ∓i(1 +

u4)3/32u6, λ±−2 = (2t− 1)/128t2(1− t)2 = (u4 − 1)(1 + u4)4/128u8.

General solutions to the system (4.17) are of the form

(4.18)
X+

1 = K+
eixS(t)

t3/4(1−t)1/4 exp
{ −i

16x

(
u2 − 1

u2

)
− 1

512x2

(
u4 + 2 + 1

u4

)
+ . . .

}
,

X−1 = K−
e−ixS(t)

t3/4(1−t)1/4 exp
{

i
16x

(
u2 − 1

u2

)
− 1

512x2

(
u4 + 2 + 1

u4

)
+ . . .

}
,

with arbitrary constants K± (which may depend on x). Substituting this to Eq.
(4.16) and then to g = 1

2λ (X+ −X−) (see Eq. (4.14)) one finds a general solution
to Eq. (1.1) in the form

g = K+g
+
norm(t;x) +K−g

−
norm(t;x),

where

(4.19) g±norm(t;x) =
(
1 + (5/256)x−2 + . . .

)
· g±test(t;x)

and g±test are the testing WKB solutions (see Definition 1 and Eq. (4.7)).

For general degree d ≥ 2 we have g1 = g, g2 = ∂g/x, . . . , gd = ∂d−1g/xd−1 in an

analogue of Eqs. (4.12), λσ1 = σṠd(t), σ = ςj+1/2, j = 0, . . . , d − 1, in Eq. (4.13)
and we finally obtain the diagonal system

(4.20) Ẋσ
1 = λσ(t;x)Xσ

1 , λσ = λσ1 (t)x+ λσ0 (t) + λσ−1(t)x−1 + . . . ,

with solutions Xσ
1 = Kσ · exp

∫ t
0
λσ(τ ;x)dτ, which imply the formula

(4.21) g =
∑
σ

Kσ · gσnorm(t;x)

for a general (formal) solution to the hypergeometric equation (1.1).

Definition 2. The solutions gσ are called the normal WKB solutions associ-
ated with the point t = 0. Corresponding normal WKB solutions associated

with the point s = 1 − t = 0 are hσnorm(s;x) = ξd (σx)
d/2

e−σxSd(1)gσ(1 − s;x)
(where ξd is the same as in Definition 1).

The normal WKB solutions are also defined uniquely, because the reduction
to the normal form is unique and essentially algebraic. They seem to be more
important than the testing WKB solutions gσtest, because we can show that they are
represented by analytic functions in some sectorial domains (due to some Birkhoff’s
theorem discussed below).

Note also that the normal form system (4.20) is more natural than the WKB
solutions gσnorm, because the latter involve the initial condition Sd(0) = 0.



MZV AND WKB 171

Remark 2. The relation between gσnorm and gσtest is of the form

gσnorm(t;x) = Cσnorm(x−1) · gσtest(t;x),

where Cσnorm(x−1) = 1 + O(x−1) are formal series. It seems that all the series
Cσnorm(x−1) are the same for any index σ and depend on x−d. This is proved for
d = 2 in [ZZ1]. Also from Eq. (4.19) it follows that these series are nontrivial.

4.3. Analytic normalization. We have seen that the process (which is standard)
of successive reduction of Eq. (4.15) to the normal (diagonal) form is essentially
algebraic. It is also unique. Unfortunately, it is divergent.

The problem of analytic interpretation of the WKB method is highly nontrivial.
There exist known results about WKB functions which are analytic in some rather
special domains and have the same asymptotic expansions as the formal WKB
series. But those analytic functions undergo dramatic changes when the domains
are changed; this is the famous Stokes phenomenon studied in Section 7.

Additional complication arises from the dependence of two variables: x (which
is large) and t (which is bounded). In a traditional approach, used mostly by the
physicists [He, BNR], the parameter x is real and the variable t may vary in some
complex domain. In that domain there exist so-called Stokes lines which separate
domains of uniqueness of the WKB functions. Several Stokes lines meet at so-called
turning points, which are the ramification points of the derivative Ṡ(t) = dS/dt

of the ‘action’ (like Ṡ(t) =
√
q(t) for the Schrödinger equation ψ̈ = −x2q(t)ψ). In

our situation, the fact that Ṡ(t) is infinite at t = 0 and t = 1 causes additional
complication.

Since our principal aim is to study analytic properties of the connection coeffi-
cient Ad(x) in Lemma 2, we should rather consider complex x, while t can stay real.
When one allows arg x to vary the Stokes lines also should vary in a controllable
way (see [DePh]). But this controlling is rather troublesome and we prefer to use
our own method.

One ingredient of this method is exemplified in Theorem 1 below (we refer the
reader to our original work [ZZ2]). It allows to treat analytically WKB functions
in two domains in C × C = {(t, x)} : U0 × V∞ and U1 × V∞, where U0,1 are
neighborhoods of t = 0, 1 and V∞ = (C,∞) . In these domains we are able to
control perfectly the Stokes lines and their x−dependence (see Section 7).

Another ingredient (realized in this section) is an analogue of a theorem due
to G. D. Birkhoff [Bir] about WKB functions analytic in domains like W × S
where W is a neighborhood of the ‘interior’ of the segment [0, 1] in the t−plane
and S is a sector in the x−plane. The above domains have non-empty suitable
intersections which allows to provide an analytic realization of formal WKB type
series for solutions of differential equations and of the connection coefficient Ad(x).
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The reduction (4.16) is divergent (as a power series in x−1) and the WKB
solutions g± are only formal solutions. G. Birkhoff [Bir] was the first who proved
that such a system can be diagonalized analytically in some sectorial domains.
Below we present a scheme of the Birkhoff’s proof in the case d = 2.

We apply a change

(4.22) X+ = X+
1 + V 12(t)X−1 , X− = V 21(t)X+

1 +X−1

which should transform system (4.15), i.e.

d

dt

(
X+

X−

)
=

(
B11 B12

B21 B22

)(
X+

X−

)
,

to the diagonal form

(4.23) Ẋ+
1 = D+(t)X+

1 , Ẋ−1 = D−(t)X−1 .

We get D+ = B11 + B12V 21, D− = B21V 12 + B22 and two independent Riccati
equations

V̇ 12 = B11V 12 − V 12B22 +B12 − V 12B21V 12,

V̇ 21 = B22V 21 − V 21B11 +B21 − V 21B12V 21.

The latter differential equations are rewritten in form of the following integral
equations:

V 12(t) =

∫
Γ1(t)

eP (t)−P (τ)
{
B12(τ)− V 12(τ)B21(τ)V 12(τ)

}
dτ,(4.24)

V 21(t) =

∫
Γ2(t)

eP (τ)−P (t)
{
B21(τ)− V 21(τ)B12(τ)V 21(τ)

}
dτ,(4.25)

P (t) =
∫ t

0
(B11(ι)−B22(ι))dι = 2ixS2(t) + . . . . Here Γ1(t) and Γ2(t) are some well

chosen paths in the τ−plane.

One would like to treat Eqs. (4.24)–(4.25) as fixed point equations in suitable
functional spaces. For this the nonlinear operators defined by the right-hand sides
should be contracting, at least bounded (see [Was, Zo3]).

The crucial element in the proof of the latter property is the possibility to
estimate the factors e±(P (t)−P (τ)) ≈ exp {±2ix(S2(t)− S2(τ))} . Thus, if t ∈ (0, 1)
is real, then for Imx > 0 we take the integration paths as segments Γ1 = [0, t] and
Γ2 = [1, t] ; when Imx < 0 we take Γ1 = [1, t] and Γ2 = [0, t] .

But the entries Bij(t) of the matrix B have poles at t = 0 and t = 1. Moreover,
we want to extend the range of arg x and to allow complex values of t. We choose
three small constants α > 0, β > 0 and 0 < τ0 << β and define the following
domains: W = {t = t1 + it2 : β < t1 < 1− β, |t2| < βt1(1− t1)} ⊂ C (a neigh-
borhood of the open segment (β, 1− β) ⊂ R) and Du,Dd ⊂ C2 (‘up’ and ‘down’)
by the conditions

ImxS2(t), Imx(S2(1)− S2(t)) > −α, t ∈ W (for Du),

ImxS2(t), Imx (S2(1)− S2(t)) < α, t ∈ W (for Dd).
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If (t, x) ∈ Du then the contour Γ1 begins at τ = τ0 and ends at τ = t and the
path Γ2 begins at τ = 1 − τ0 and ends at τ = t and with Imx(S(t) − S(τ)) < 0.
For (t, x) ∈ Dd the choice of the contours is opposite.

Solving the integral equations in the domains Du and Du one obtains analytic
solutions g±u (t;x) and g±d (t;x) respectively. They have the same formal asymptotic
expansions as the principal WKB solutions g±(t;x).

We note the conjugation symmetry of the above construction:

g+
u (t;x) = g−d (t̄; x̄), g−u (t;x) = g+

d (t̄; x̄).

In the case of general degree d ≥ 2 the corresponding system of Riccati type
equations consists of d(d − 1) equations for the off-diagonal entries V σρ(t) of the
matrix V (t) (with 1’s on the diagonal) such that X = V X1. The corresponding
integral equations take the form

(4.26) V σρ(t) =

∫
Γσρ

e(σ−ρ)x(Sd(t)−Sd(τ))Fσρ(τ, V (τ))dτ.

Here there are 2d domains D1,2,D2,3, . . . ,D2d,1 being neighborhoods of the sectorial

sets [β, 1− β] × Sk,k+1, where Sk,k+1, k = 1, . . . 2d (and 2d + 1 = 1), are closed
sectors defined by division of a neighborhood of x =∞ by the lines arg x = jπ/d,
j = 0, . . . , d− 1. One obtains solutions gσk,k+1(t;x) analytic in the domains Dk,k+1.
From the construction they satisfy the following symmetry properties:

gσk+2,k+3(t, ςx) = gςσk,k+1(t;x),(4.27)

gσk,k+1(t;x) = gσ̄2d−k+1,2d−k+2(t̄; x̄),(4.28)

ς = e2πi/d.

Let us summarize the results of this subsection in the following

Proposition 1. For d > 2 there exist 2d systems of solutions (gσk,k+1), k =

1, . . . , 2d, analytic in the domains Dk,k+1 (defined above) whose formal expansions
are the same as for the normal WKB solutions gσnorm from Definition 2. They
satisfy relations (4.27) and (4.28).

For d = 2 there exist two such systems (gσu) =
(
gσ1,2
)

and (gσd ) =
(
gσ2,1
)

analytic
in the domains Du = D1,2 and Dd = D2,1.

5. Bessel approximations

5.1. Bessel type equations and their basic solutions. Consider series (1.2)
when x→∞ and

y = xdt
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is finite. Then we get

(5.1) ϕ1(t;x) ≈ Φ1(y) :=
∞∑
n=0

(−y)n

(n!)d
=0 Fd−1(1, . . . , 1;−y),

i.e. a confluent hypergeometric function. For d = 2 the function Φ1 is expressed
via a Bessel function:7

(5.2) Φ1(y)|d=2 = J0(2
√
y).

The function Φ1 satisfies a special confluent hypergeometric equation, which we
call the Bessel type equation:

(5.3) ∂y(y∂y)d−1G+G = 0.

The other independent solutions to Eq. (5.3) are

(5.4)

Φ2(t) = Φ1(y) ln y + Ψ2(y),

Φ3(t) = 1
2!Φ1 ln2 y + Ψ2 ln y + Ψ3(y),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φd(y) = 1
(d−1)!Φ1 lnd−1 y + 1

(d−2)!Ψ2 lnd−2 y + . . .+ Ψd(y)

(where Ψj are some entire functions), they approximate the solutions ϕj .

Of course, Eq. (5.3) is obtained from Eq. (1.1) by the change t = y/xd, ∂t =
xd∂y and taking limit as x→∞. We shall do analogous change with Eq. (3.5) by
taking x large and

z = xdsd−1

finite. The obtained Bessel type equation is following:

(5.5) (1− d)d · z
1
d−1

(
z
d−2
d−1 ∂z

)d
H +H = 0.

It has basic solutions of the form

(5.6)
Θj(z) = 1

j!z
j/(d−1)Fj(z) = 1

j!z
j/(d−1) · (1 +O(z)), (j = 1, . . . , d− 1),

Θd(z) = Θd−1(z) ln z + Ξd(z),

where Fj(z) are some concrete confluent hypergeometric series and Ξd is an entire
function.

For d = 2 we have

(5.7) Θ1|d=2 =
√
zJ1(2

√
z)

7Recall that the Bessel function with index µ equals Jµ(w) =
∑∞
n=0

(−1)n

Γ(µ+n−1)n!

(
w
2

)2n+µ
.
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and for d = 3 we have

Θ1|d=3 =
√
z

(
1 +

∞∑
n=1

zn

(2n+ 1)!(2n− 1)!!

)
=
√
z ·0 F2

(
α, β;

z

8

)
,(5.8)

Θ2|d=3 = 2
∞∑
n=1

zn

(2n)!(2n− 2)!!
= z ·0 F2

(
γ, δ;

z

8

)
,(5.9)

where α = δ = n+ 1/2, β = n− 1/2, γ = n+ 1.

5.2. Formal and analytic WKB solutions. The Bessel type equation (5.3) has
irregular singular point at y = ∞ and equation (5.5) has irregular singular point
at z =∞. Any linear meromorphic differential equation with an irregular singular
point has uniquely defined (up to a multiplicative constants) formal solution which
we call the WKB solutions.

For Eq. (5.3) the WKB solutions are of the form

(5.10) Gσ(y) =
(
σy1/d

)γ
edσy

1/d

{
1− a1

σy1/d
+

a2(
σy1/d

)2 − . . .
}
, γ = −d− 1

2
,

and the WKB solutions for Eq. (5.5) are following:

(5.11) Hσ(z) =
√
−σz1/de(d/(1−d)σz1/d

{
1 +

b1
σz1/d

+
b2(

σz1/d
)2 + . . .

}
,

where σ = ςj+1/2, j = 0, . . . , d−1, (as usual), the choice of the square root
√
−σz1/d

is defined in Definition 1 and the coefficients are computed recursively.

The dependence of the above functions on the roots y1/d and z1/d is not useful
in calculations. Often we will use the variables

(5.12) v = y1/d, w = z1/d

and denote corresponding WKB solutions as

(5.13) G̃σ(v) = −Gσ(v3), H̃σ(w) = Hσ(wd).

They satisfy the following Bessel type equations:

(v∂v)
dG̃+ dd · vdG̃ = 0,(5.14)

(1/d− 1)
d · w

d
d−1

(
w
−1
d−1 ∂w

)d
H̃ + dd · H̃ = 0.(5.15)

Like in Section 4.2 we can transform each of the Eqs. (5.14)–(5.15) to a corre-
sponding linear system which is next diagonalized using shearing transformations.
The obtained diagonal system has basic solutions which must equal the WKB so-
lutions from Eqs. (5.13). This formal reduction of the Bessel type equations to
the normal form is in complete agreement with the analogous reduction of the
hypergeometric equation.
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But when we want to obtain analytic normal forms, then one encounters some
differences with what is done in Section 4.3. For example, in the case of Eq. (5.14)
one arrives to an analogue of Eq. (4.26), i.e.

V σρ(v) =

∫
Γσρ

ed(σ−ρ)(v−τ)Fσρ(τ, V (τ))dτ,

but now the paths Γσρ = Γσρ(v) of integration are chosen rather differently.

Consider sectors S1, . . . , S2d with angles 2π/d − δ (δ > 0 small) and with the
bisectrices arg v = 0, π/d, . . . , (d − 1)π/d. These bisectrices Rj correspond to the
situations when Im (σ − ρ) v = 0 (for some σ and ρ) and are called the rays of
division associated with the pair (σ, ρ) .

With given unordered pair {σ, ρ} two rays of divisionRj andRj+d are associated
(here j+d is taken mod 2d). Consider larger sectors Sj−[d/2]∪. . .∪Sj∪. . .∪Sj+[d/2]

and Sj+d−[d/2]∪ . . .∪Sj+d∪ . . .∪Sj+d+[d/2] with the above rays as their bisectrices;
they cover a neighborhood of v = ∞. For v ∈ . . . ∪ Sj ∪ . . . (respectively v ∈
. . .∪ Sj+3 ∪ . . .) the path Γσρ(v) runs parallel to the ray Rj from τ =∞ to τ = v.

Due to the fact that the factors ed(σ−ρ)τ in the corresponding integral equations
are bounded for τ ∈ Γσρ(v) the solutions to the integral equations exist and are
analytic in the sectors Sk.

We denote the analytic solutions in the sectors Sj obtained above by

(5.16) G̃σj (v), v ∈ Sj , j = 1, . . . , 6.

They are formally equivalent to the formal WKB solutions form Eqs. (5.10)–(5.13).
(But for d = 2 we have only two sectors S1 = Sr (right)and S2 = Sl (left) with
bisectrices R1 = {arg v = 0} and R2 = {arg v = π} and angles 2π− δ and two sets

of solutions G̃±r,l(v).

Analogously we obtain systems of analytic solutions to Eq. (5.15):

(5.17) H̃σ
j (w), w ∈ Sj , j = 1, . . . , 2d.

Remark 3. Functions (5.16) and (5.17) were constructed by solving corresponding
integral equations. But there exist explicit integral formulas for analytic WKB solu-
tions to Bessel type equations (and to general hypergeometric confluent equations)
due to A. Duval and C. Mitschi [DuMi] (see also [ZZ3]). For example, for d = 3
the following Mellin–Barnes integral

G−DM (y) =
1

2πi

∫
γ

Γ3(−τ)yτdτ,

where γ is a path from τ = −i∞ to τ = +i∞ which leaves the poles τ = 1, 2, . . . of
the Gamma function from the right, defines a solution to the Bessel type equation
(5.3) for d = 3. (The function G−DM is a particular case of the so-called Meijer

G–functions, [Me] and [BE1]). It turns out that G−DM (y) is analytic in the sec-

tor
{
−π − ε < arg y1/3 < π + ε

}
and has the form G−DM = e−3y1/3y−1/3Ω0(y−1/3)

(like G−).
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Moreover other WKB solutions can be taken in the form

GεDM (y) = e3εy1/3y−1/3Ω0(ε̄y−1/3), Gε̄DM (y) = e3ε̄y1/3y−1/6Ω0(εy−1/3)

(where the notations −, ε, ε̄ are like in Note 6). The new WKB solutions H−DM ,
Hε
DM , H

ε̄
DM to the Bessel type equation (3.7) are defined similarly, via the following

Mellin–Barnes integral:

H−DM (z) =
1

2πi

∫
γ

Γ(1− τ)Γ(1/2− τ)Γ(−τ)(−z/8)τdτ

= e
3
2 z

1/3

z1/6Ω1(z−1/3).

Also for other degrees d 6= 3 Duval and Mitschi define WKB solutions GσDM and
Hσ
DM analytic in suitable sectors about infinity.

Finally, we note that analyticity of the WKB solutions in sectors can be proved
in still another way, using the fact that the formal WKB solutions are defined via
Gevrey type series, by applying corresponding Borel and Laplace transforms. We
refer the reader to the books of W. Balser [Bal] and J.-P. Ramis [Ram].

5.3. Equivalences of hypergeometric equation and its Bessel approxima-
tions. Importance of the above approximations can be seen from the following
result, which is a special case of a more general theorem proved in [ZZ2, Theorem
2]. Let Φ = (Φ1, . . . ,Φd), Θ = (Θ1, . . . ,Θd) denote the bases (5.1)–(5.4) and (5.6)
and ϕ, θ be corresponding bases from Section 3.

Theorem 1. There exist matrix-valued functions H0(t) = I + O(t) and H1(s) =
I + O(s), defined in a neighborhood of t = 0 and s = 1 − t = 0 in C and analytic
there, such that

ϕH0 = Φ, θH1 = Θ.

Proof. Let

F0 =

 ϕ1 . . . ϕd
. . . . . . . . .

∂d−1
t ϕ1 . . . ∂d−1

t ϕd

 , G0 =

 Φ1 . . . Φd
. . . . . . . . .

∂d−1
t Φ1 . . . ∂d−1

t Φd


be the fundamental matrices associated with the bases ϕ (see Eq. (3.4)) and Φ and
∂tΦj = xd∂yΦj means differentiation with respect to the time t. Then we have

H0(t;x) = F−1
0 G0.

Analogously the fundamental matrices F1 and G1 associated with the fundamental
systems θ and Θ define the matrix-valued function

H1(s;x) = F−1
1 G1.

It is clear from Section 3 that the matrices F0(t, x) and G0(t, x) are analytic in
(t, x) for t ∈ (C�0, 0) and x ∈ C�0. It was observed in [ZZ2] that the matrices F0
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and G0 have the same monodromy properties as t turns around 0 and as x turns
around 0 (or around ∞) and have the same singularities at t = 0 and at x = 0.
Moreover, from the analysis in Sections 6 and 7 it follows that these matrices have
almost the same asymptotic as x → ∞, i.e. in sectorial domains. Therefore the
matrix valued function H0 is single valued in the both variables and is bounded
at possible singularities: t = 0, x = 0 and x = ∞. It follows that it is analytic in
t ∈ (C, 0) and constant in x ∈ C.

The same arguments prove that H1(s;x) is holomorphic in s ∈ (C, 0) and con-
stant in x ∈ C.

Theorem 2 from [ZZ2] is a generalization of a theorem of W. Wasow from [Was]
about reduction of equations of the form d2x/dt2 =

{
λ2ta(t) + λb(t, 1/λ)

}
x, a(0) =

1 (with analytic germs a and b and large λ) to the Airy equation ∂2
T y = Ty,

T = tλ2/3, which is also of the Bessel type. In [ZZ2] a slightly weaker result was
proved; namely, it was stated thatH0(t, x) is analytic in t ∈ (C, 0) and x−1 ∈ (C, 0).

Definition 3. The functions gσprinc = GσH−1
0 are called the principal WKB

solutions near t = 0 to hypergeometric equations (1.1) and the functions hσprinc =

HσH−1
1 are called the principal WKB solutions near s = 1− t = 0 to the same

equation.

Remark 4. Since the WKB solutions Gσ to Eq. (5.3) and Hσ to Eq. (5.5)
are formal the principal WKB solutions gσprinc and hσprinc are also only formal.
Their relations with the formal and normal WKB solutions from Definition 1 and
Definition 2 are of the form

(5.18) gσprinc = Kσ
princ(x−1) · gσtest, hσprinc = Lσprinc(x−1/(d−1)) · hσtest

for some series Kσ
princ(x−1) = 1+O(x−1) and Lσprinc(x−1/(d−1)) = 1+O(x−1/(d−1)).

Here Lσprinc is a series in powers of x−1/(d−1) because the hypergeometric equation

(1.1) is a perturbation of the Bessel type equation (5.5) and in the perturbation we
encounter powers of s = z1/(d−1)x−d/(d−1); in fact we solve it by solving a system
of equations in variations (see [ZZ3]).

Therefore

(5.19) gσprinc(1− s) = ξ−1
d

Kσ
princ

Lσprinc

(σx)
−d/2

eσxSd(1) · hσprinc(s).

We have not calculated the series Kσ
princ(x−1) and Lσprinc(x−1), but there is no

reason to expect that they are equal. But Eq. (4.19) above and Lemma 5 below
suggest that probably Kσ

princ(x−1) = Lσprinc(x−1) = Cnorm(x−2) = 1 + (5/256)x−2 +
. . . for d = 2.

On the other hand, if we choose analytic versions (i.e. in some sectors) of the
formal WKB solutions to Eqs. (5.3) and (5.5), like in Section 5.2, then by applying
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the operators H−1
0 and H−1

1 to them we obtain analytic principal WKB solutions
in corresponding domains.

Moreover, the domain of definition of H0(t) is not limited to a small neighbor-
hood of t = 0. H0 is analytic in a disc {|t| < 1− ε0} for small ε0. Similarly H1(s)
is analytic in {|s| < 1− ε0} . These two domains have quite big intersection.

Finally, because there exist analytic (in sectors) versions Gσj and Hσ
j of the

formal WKB functions, application of H−1
0 and H−1

1 to them gives corresponding
analytic principal WKB solution to the hypergeometric equation.

Definition 4. We introduce the following WKB type formal functions

Fσ(x) =
gσprinc(1− s;x)

hσprinc(s;x)
= ξ−1

d (σx)
−d/2

eσxSd(1)ωσ(x−1/(d−1)).

Here ωσ(x−1/(d−1)) = Kσ
princ(1/x)/Lσprinc(1/x1/(d−1)) and

S2(1) = π and S3(1) = 2π/
√

3.

We have

F± =
1

x
e±ixπω±(1/x) ,(5.20)

Fσ = ±e
−2xσπ/

√
3

x3/2
ωσ
(
x−1/2

)
,(5.21)

for d = 2 and d = 3 respectively; in Eq. (5.21) ± = + for σ = ε, ε̄ and = − for
σ = −1.

In the case d = 3 the series ωσ(x−1/2) are not single valued. We can write
instead

x−3/2ωσ± = ±
√
x · x−2ωσ0 (x−1) + x−2ωσ1 (x−1).

Then we have six WKB type functions

(5.22) Fσ± = x−3/2e2σxπ/
√

3ωσ±.

In the case of odd d > 3 there are d(d− 1) similar WKB functions.

6. Integral representations and stationary phase formula

6.1. Integral formulas. Some of the series defining solutions of hypergeometric
and Bessel type equations have integral representations. We begin with the stan-
dard representation of the Bessel functions:

(6.1)
Jn(w) = 1

2πi

∮
|u|=1

exp
(w

2
(u− 1/u)

) du

un+1

= 1
2π

∫ π
−π exp (iw sinα) e−inαdα.

This formula was obtained by Bessel and can be found in the literature (see
[BE2, GM]). Let us recall its simple proof whose argumentation can be used in
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more general situations. The series
∑∞
m=0(−1)m(w2/4)m+n/2/(m + n)!m! which

defines Jn(w) admits the following residue representation:

resu=0
1

un+1

(∑ (wu/2)
m

m!

)(∑ (−w/2u)
m

m!

)
.

Next we use the Cauchy formula.

For a non-integer index µ we have the following Schläfli representation:

Jµ(w) =
1

2π

∫ π

−π
exp (i(w sinα− µα)) dα

− sinπµ

π

∫ ∞
0

exp (−w sinhβ − µβ) dβ.

(6.2)

This follows from some generalization of the residuum formula for Jn with integer n.
We have Jµ(w) = 1

2πi

∫
C

exp
(

1
2w (u− 1/u)

)
u−µ−1du where C is a contour which

begins and ends at u = −∞ and surrounds u = 0 in positive direction. Next the
contour C is deformed to two half-lines along (−∞,−1) (parametrized by −eβ)
and the circle |u| = 1. For more details we refer reader to [BE2, Eq. 7.3(9)].
(In the original Schläfli formula the first integral in Eq. (6.2) is replaced with
1
π

∫ π
0

cos (w sinα− µα) dα.)

Now we are ready to present a multidimensional contour integrals. We have

(6.3) Φ1 =

(
1

2πi

)d−1 ∫
· · ·
∫

|Q0|=...=|Qd−2|=1

exp

−y1/d
d−1∑
j=0

ςjPj


d−2∏
j=0

dQj
Qj

for the generalized Bessel function (5.1). Here and below ς = e2πi/d and

(6.4)
P0 = Q0, P1 = Q1Q

−1/(d−1)
0 , . . . , Pd−2 = Qd−2Q

−1/2
d−3 . . . Q

−1/(d−1)
0 ,

Pd−1 = Q−1
d−2Q

−1/2
d−3 . . . Q

−1/(d−1)
0 ;

thus
∏

Pj = 1.

For the hypergeometric function (1.2) we get the following formula:

(6.5) ϕ1 =

(
1

2πi

)d ∫
· · ·
∫

|Q0|=...=|Qd−2|=1


d−1∏
j=0

(
1− t1/dPj

)ςj
x
d−1∏
j=0

dQj
Qj

.

In the proof one uses the expansions

(1− z)−a =
∑ Γ(a+ n)

Γ(a)n!
zn

and

dFd−1(a1, . . . , ad; 1, . . . , 1; t) =
∑ Γ(a1 + n)

Γ(a1)n!
. . .

Γ(ad + n)

Γ(ad)n!
tn.



MZV AND WKB 181

Using the Schläfli formula (6.2) we can prove the formula (with the Euler–Mascheroni
constant γ)

(6.6)
(Φ2 + 2γΦ1) |d=2 = 1

iπ

∫ π
−π α exp

(
2i
√
y sinα

)
dα

−2
∫∞

0
exp

(
−2
√
y sinhβ

)
dβ

for another solution limν→0
1
ν

{
Jν(2
√
y)− J−ν(2

√
y)
}

to the Bessel type equation
(5.3) for = 2.

The Schläfli formula admits a generalization to the case of hypergeometric inte-
grals (see [ZZ1]). It allows to prove the following formula for the solution ϕ̂2 (for
d = 2) from Remark 1:

(6.7)
ϕ̂2|d=2 = 1

2πi

∫
|v|=1

(
1−
√
tv

1−
√
t/v

)x
ln
(

1−
√
tv

v2(1−
√
t/v)

)
dv
v

−
∫ 1/
√
t

1

(
1−
√
tv

1−
√
t/v

)x {
sinπx
π ln

(
1−
√
tv

v2(1−
√
t/v)

)
+ 3 cosπx

}
dv
v .

Unfortunately, we do not have integral formulas for the basic solutions θj to the
hypergeometric equation near 1 − t = 0 for odd d > 2. (For d = 2 we can use the
duality formula from Lemma 3.) The reason for this is that the recurrence relations
for the coefficients in the series defining θj are of length greater than two.

Fortunately, we can find such formulas for the solutions Θj to the Bessel type
equation (5.5).

In the case d = 2 the duality relation implies

Θj(z)|d=2 = −z∂zΦj(z), j = 1, 2,

and, in particular,

Θ1(z)|d=2 =
√
zJ1(2

√
z).

For d = 3 we have the following formulas (for the proofs see [ZZ3]):

(6.8)
Θ1|d=3 = − z

1/6

8π

·
∫
C′

dτ
(1−τ)3/2

∫ π
−π dα sinh

(
z1/3eiα/2

)
exp

(
1
2z

1/3e−iατ
)
e−iα/2,

(6.9) Θ2|d=3 =
z1/3

2π

∫ π

−π
cosh

(
z1/3eiα/2

)
exp

(
1

2
z1/3e−iα

)
e−iαdα.

In Eq. (6.8) C ′ is a contour which begins and ends at τ = 0 and surrounds τ = 1 in
positive direction. (The third solution Θ3|d=3 to the Bessel like equation (5.5) can
be found by taking the perturbation 8

{
z2∂z
√
z∂z
√
z∂z − ν(ν − 1/2)(ν − 1)

}
H −

zH = 0 and passing to the limit as ν → 0 with suitable combination of the basic
solutions.)
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6.2. The stationary phase formula. Recall (see [He]) that the stationary phase
formula concerns integrals of the type

(6.10) I(λ) =

∫
eλφ(α)χ(α)dkα

over a k−dimensional manifold when |λ| → ∞. Assuming that the ‘phase’ φ(α) has
finitely many critical points α1, . . . , αn, which are Morsean, one has the following
asymptotic stationary phase formula:

(6.11) I(λ) ∼
∑
i

χ(αi)
1√

det(−D2φ(αi))
eλφ(αi)

(
2π

λ

)k/2
.

Usually, in applications, the large parameter λ is imaginary and the phase φ is a
real function; then the integral in Eq. (6.10) is called the oscillating integral.
Otherwise the name mountain pass integral is sometimes used; with such case
we deal in this paper. In the case of real x and t the integrals (6.3), (6.5)d=2,
(6.6) and (6.7) are oscillating integrals and for d > 2 we deal with mountain pass
integrals.

We want to apply formula (6.11) to the above integrals with large |y| or |z| .
However here the large parameter λ is not purely imaginary and the phase φ is not
a real function. So we shall assume that λ lies in some sector S (in the complex
plane) with vertex at ∞. Then the sum in Eq. (6.11) becomes restricted to those
critical points αi for which the function

z → exp
{
λD2φ(αi)(z, z)

}
is integrable, i.e. the eigenvalues µj of the Hessian D2φ(αi) satisfy

Re(λµj) ≤ 0.

We shall also deal with integrals of the type

(6.12) J(λ) =

∫ β1

β0

eλϕ(β)χ(β)dβ,

where the ‘phase’ function ϕ is noncritical. Assume that

(6.13) ϕ′ < 0, χ(β) = (β − β0)σ−1(D + l.o.t.),

where the function χ1(β) = D + l.o.t. is analytic near β0. In this case, for large λ,
with Reλ ≥ 0, and Reσ > 0 we have

(6.14) J(λ) ∼ D · Γ(σ) · exp {λϕ(β0)} · (−λϕ′(β0))−σ

(see [ZZ3, Lemma 3.7]). Moreover, this formula holds also when Reσ < 0 and is
not integer, but the integral in Eq. (6.12) is replaced by (1 − e−2πiσ)−1 times an
integral along a contour which surrounds the point β0 in negative direction.

The aim of this subsection is to derive initial terms of the asymptotic expansions
of the functions expressed via the above contour integrals.
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Let us consider firstly the simplest case of the oscillating integral Φ1(y)|d=2 =
1

2π

∫
exp

(
2i
√
y sinα

)
dα. The phase function φ(α) = 2i sinα has two critical points

α1 = π
2 with φ(α1) = 2i, φ′′(α1) = −2i and α2 = −π2 with φ(α2) = −2i, φ′′(α2) =

2i. Therefore we obtain the following (well known) asymptotic formula for y →∞ :

(6.15) Φ1|d=2 ∼
1

2
√
πy1/4

(
ei(2
√
y−π/4) + e−i(2

√
y−π/4)

)
.

In the right-hand side of Eq. (6.6) the second integral can be ignored, because
it decreases like y−1/2 (without any exponent). The first integral in that formula
is an oscillating integrals and standard application of Eq. (6.11) gives (for y →∞)

(6.16) (Φ2 + 2γΦ1) |d=2 ∼
√
π

2iy1/4

(
ei(2
√
y−π/4) − e−i(2

√
y−π/4)

)
.

In the case of the oscillating integral (6.3)d≥3 the phase equals

φ(Q) =
∑

ςjPj .

Its critical points are calculated using a Lagrange multiplier κ corresponding to the

restriction
∏

Pj = 1. One finds Pj = κς−j , where κd = −1. This gives d points

P (k), k = 0, . . . , d − 1, P
(k)
j = ςk−j+1/2, and to d! critical points Q(l) (when we

take into account choices of the roots Q
1/(d−1)
0 , . . . , Q

1/2
d−2. Next, one substitutes

Pj = P
(k)
j eipj and Qj = Q

(l)
j e

iqj , where pj and qi satisfy definite linear relations

(see Eqs. (6.4)). The Taylor expansion of the phase at Q(l) takes the form φ(q) =

φ(Q(l)) + 1
2

∑
a

(l)
mnqmqn + . . . and the corresponding contribution in the stationary

phase formula takes the form

(2π)
(1−d)/2

(
detA(l)

)−1/2

· e−y
1/dφ(Q(l)) · y(1−d)/2d, A(l) =

(
a(l)
mn

)
In the case d = 3 we obtain, as y →∞,

(6.17) Φ1|d=3 ∼
1

π
√

3y1/3

(
e3εy1/3

ε
+
e3ε̄y1/3

ε̄
+
e−3y1/3

−1

)
, ε = eiπ/3.

(We have not finished calculations for d > 3.)

For the integral (6.5) the phase

φ(Q) =
∑

ςj ln(1− t1/dPj)

also has d! critical points.

For d = 2 the critical points in Eq. (6.5)d=2 are Q± =
√
t ± i

√
s, s = 1 − t,

and φ(Q±eiq) = ±iS2(t) ∓ iu2q2, u = 4
√
t/s. Therefore the leading term of the

oscillatory integral corresponding to the critical point α± equals

e±ixS(t) 1

2π

∫
exp(∓ixu2q2)dq ∼ 1

2u
√
±iπx

e±ixS2(t).
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We obtain

(6.18) ϕ1|d=2 ∼
1

2
√
π

{
eixS2(t)

u
√
ix

+
e−ixS2(t)

u
√
−ix

}
.

For d = 3 the critical points are Qσ,±, σ = −1, ε, ε̄, such that

Qσ,±1 =
1

t1/3 − σ̄s1/3
, Qσ,±2 = ±

√
u+ ε̄σ̄

u+ εσ̄
, u =

(
t

s

)1/3

, s = 1− t.

Here the absolute values of Qσ,±j are different from 1, so it is rather a mountain
pass integral than an oscillating integral. We deform the initial integration contour,
the torus T0 = {Q1 = eiα, Q2 = eiβ : 0 ≤ α, β ≤ 2π}, to another contour T1

such that it passes through the critical points and near these points we can write
Q1 = Qσ,±1 eiq1 , Q2 = Qσ,±2 eiq2 (see [ZZ3] for details).

One has φ(Qσ,±) = σS3(t) and the corresponding matrix Aσ defining the qua-
dratic terms equals

−σu

(
3
4 (2− σu) i

√
3

2 σu

i
√

3
2 σu 2 + σu

)
,

with the determinant 3 (σu)
2
.

The leading part of the hypergeometric function (6.3)d=3 arising from a neigh-
borhood of the point Qσ,± for large |x| equals eσxS3(t) times

(
1

2π

)2 ∫ ∫
e−x(Aq,q)/2d2q =

1

2π
√

3
×

{(
1− t
t

)1/3
1

σx

}
.

It agrees, up to a constant, with the first term in the testing WKB solution gσtest(t;x)
given in Definition 1. We get the following formal expansion as x→∞ :

(6.19) ϕ1|d=3 ∼
1

2π
√

3

{
e−xS3(t)

−ux
+
eεxS3(t)

εux
+
eε̄xS3(t)

ε̄ux

}
.

Let us present the corresponding stationary phase expansions for the functions
Θj(z)|d=2,3. For d = 2 we have the following expansions, as z →∞,

(6.20)
Θ1|d=2 ∼ −1

2
√
π

{√
z1/2

i e−2i
√
z +

√
z1/2

−i e
2i
√
z

}
,

(Θ2 + 2γΘ1)|d=2 ∼
√
π

2i

{√
z1/2

i e−2i
√
z −

√
z1/2

−i e
2i
√
z

}
.
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In [ZZ3] it was found that the integrals (6.8) and (6.9) have the following expan-
sions:

(6.21)

Θ1|d=3 ∼
√

1/3 ·
{
z1/6e

3
2 z

1/3 − εz1/6e−
3
2 ε̄z

1/3 − ε̄z1/6e−
3
2 εz

1/3
}
,

Θ2|d=3 ∼
√

2/3π
{
z1/6e

3
2 z

1/3

+ εz1/6e−
3
2 ε̄z

1/3

+ ε̄z1/6e−
3
2 εz

1/3
}
,

Θ3|d=3 ∼ −2i
√

2π/3z1/6
{
εe−

3
2 ε̄z

1/3 − ε̄e− 3
2 εz

1/3
}

+√
6/π ln 2 · z1/6

{
e

3
2 z

1/3

+ εe−
3
2 ε̄z

1/3

+ ε̄e−
3
2 εz

1/3
}
.

Remark 5. The formulas (6.15)–(6.21) cannot be treated rigorously and the reason
for this is not the fact that the corresponding series are divergent. In fact, only
one or two leading terms are correct when arg y or arg x or arg z is fixed. This is
related with the Stokes phenomenon discussed in detail in Section 7. Also there the
correct coefficients in the expansions (6.15)–(6.21) are computed.

6.3. Applications.

6.3.1. Expansion in the principal WKB solutions. The first application is the cor-
rect WKB expansion of the analytic solution ϕ1 to our hypergeometric equation.

Proposition 2. (a) For d = 2 and 0 < t < 1, x > 0 we have

ϕ1|d=2 ∼
1

2
√
π

{
g+

princ + g−princ

}
.

(b) For d = 3 and 0 < t < 1, x > 0 we have

ϕ1|d=3 ∼
1

2π
√

3

{
gεprinc + gε̄princ − 2g−princ

}
.

Here gσprinc are the principal WKB solutions from Definition 3. Of course, these
expansions are subject to the limitation from Remark 5.

This follows from Definition 3 and the fact that the solution Φ1(y)|d=2,3 has the
same representation as in Proposition 2 with gσ replaced with Gσ. In the point (b)
the coefficient before g−princ is different than in Eq. (6.19); but by Remark 5 this
coefficient is not determined in that formula. It is calculated in Section 7.

We can formulate a result like Proposition 2 but with respect to the basic solu-
tions θj . The formulas (6.20) for d = 2 and (6.21) (for d = 3) give representation of
the solutions Θj to a Bessel type equations in the WKB bases Hσ. By Theorem 1
the same relations connect the solutions θj and hσprinc. But for us important is the
coefficient before θd in the representation of the WKB solutions hσprinc in the basis

θ. We have the following result (where Fσ are defined in Definition 4).



186 MICHA L ZAKRZEWSKI AND HENRYK ŻO LA̧DEK

Proposition 3. (a) If d = 2 and 0 < t < 1, x > 0 then we have

h+
princ = −h−princ =

−1√
π
· θ2 mod θ1.

This implies that

ϕ1 =
i

2π

{
F+ − F−

}
· θ2 mod θ1.

(b) If d = 3 and 0 < t < 1, x > 0 then we have

h−princ = 0 · θ3, hεprinc = −hε̄princ =
−i
4

√
3

2π
· θ3 mod(θ1, θ2).

This implies that

ϕ1 =
i

(2π)3/2

{
F ε̄ − F ε

}
· θ3 mod(θ1, θ2).

In other sectors the relations are different than in item (b), but always we have

something like hσprinc = const· i4
√

3
2π · θ3, where the constant is either 0 or 1 or −1

(see the next section).

6.3.2. Gaussian type integrals for d = 2. In the case d = 2 in [ZZ1] we continued
further the stationary phase expansion. We have Q = Q±eiq (as above). We put
q = A/(u

√
x±), x± = ±ix, and we expand ix∆±φ := ix(φ − φ±) in powers of

x
−1/2
± . We get

ix∆±φ = ±ix± ln(1∓ iu2
(
eiA/u

√
x± − 1

)
)∓ ix± ln

(
1∓ iu2

(
e−iA/u

√
x± − 1

))
.

The x0
±−term of this expression equals −A2 and other terms, denoted by Ω(A),

can be grouped as follows:

x±u
2

 ∑
m≥0,n≥2

cm,nu
4m

(
A2

u2x±

)n+
(
±i√x±u3A

) ∑
m≥0,n≥1

dm,nu
4m

(
A2

u2x±

)n
for some real coefficients cm,n and dm,n (which do not depend on the sign ±).

We get an integral of the form 1
2πu
√
x±

∫
e−A

2 × eΩdA, where eΩ(A) is expanded in

powers of A and integrated. By analogy with the Gaussian integrals we can assume
that

〈An〉 :=
1√
π

∫
e−A

2

AndA = (n− 1)!! ·
(

1

2

)n/2
if n is even and zero otherwise. Our computations lead to the following properties
of the basic solutions to the hypergeometric equation.



MZV AND WKB 187

Lemma 5. (a) We have

ϕ1|d=2 ∼
1

2
√
π
Kprinc(x−2)

(
g+

test + g−test

)
,

where Kprinc(x−2) is a formal series with real coefficients such that Kprinc(x−2) =
1 + 5

256x
−2 + . . . 6≡ 1 (compare Eq. (4.19)).

(b) We have

ϕ̂2 ∼
√
π

2i

{
D+(x−1)g+

test −D−(x−1)g−test

}
,

where ϕ̂2 is defined in Remark 1 and D±(x−1) are formal series satisfying

D+(x−1) +D−(x−1) = 2Kprinc(x−2).

First proof of formula (1.8). By Remark 1, Proposition 2 and Lemma 5 we
have

θ1(s) = −Kprinc

2
√
π

{
s∂sg

+
test + s∂sg

−
test

}
and a second solution can be taken in the form

θ̂2(s) = −s∂sϕ̂2 ∼ −
√
π

2i

{
D+s∂sg

+
test −D−s∂sg−test

}
.

Since ϕ̂2 = ϕ2+const·ϕ1, also θ̂2 = θ2+const·θ1, and hence Eq. (2.9) gives θ̂2(0) =
θ2(0) = −1.

For the WKB functions g±test we find the identity (see [ZZ1])

s∂sg
±
test(s) = xe±iπxg∓test(t) = ∓ih∓test(s), t = 1− s,

where π = S2(1). This, together with the results of the previous, yields the follow-
ing:

θ1(s) ∼ −xKprinc

2
√
π
{eiπxg−test(t) + e−iπxg+

test(t)},(6.22)

θ̂2(s) ∼ x

√
π

2i
{−D+e

iπxg−test(t) +D−e
−iπxg+

test(t)}.

It implies that the formula

ϕ1(t) = − 2Kprinc

D+ +D−

sinπx

πx
· θ̂2(s) mod θ1,

This and the equalities θ̂2(0) = −1, D+ + D− = 2Kprinc (see Lemma 5(b)) imply

the formula f2(x) = −A2(x) = sinπx/πx.

Finally, we note that Eq. (6.22) implies the equality K±princ = L±princ and hence

F± = e±ix/x (see Definition 4). Then the formula ϕ1 = − sinπx
πx · θ2 mod θ1 follows

also from Proposition 3 (but it needs the analysis from Section 7).
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7. The Stokes phenomenon

The Stokes phenomenon is related with ‘jumps’ of constants in the asymptotic
expansions of solutions of linear meromorphic differential equations near irregular
critical point. Here we define the Stokes operators as acting on the basic WKB
solutions. For precise informations about Stokes operators (in the case of a linear
equation near an irregular singularity) we refer the reader to [Was], [Zo3] and to
[ZZ2], where the Stokes phenomenon for the genuine WKB solutions of equations
with large parameter is discussed.

The Stokes phenomenon [St] is related with normalization of a linear system
ż = A(t)z in a neighborhood of an irregular singular point, say at t = 0. The
neighborhood of t = 0 is divided into sectors Sj , such that there exist changes
z = Bj(t)y holomorphic with respect to t ∈ Sj which lead to a diagonal system
ẏ = diag(d1(t), . . . , dn(t))y. But the matrix-valued functions Bj are different in
different sectors. The difference between Bj and Bj+1 is measured via so-called
Stokes matrices (see [Zo3]).

In the context of WKB solutions, e.g. for t ∈ (0, 1) and large parameter x,
usually the Stokes matrices are related with solutions near one of the endpoints of
the time interval, t = 0 or t = 1 (see [He]). One would like to define analogues
of the Stokes operators for the WKB solutions, but when the time t ∈ (0, 1) is
real and the large parameter x varies in some sectors near x = ∞, i.e. in (C,∞) .
However, a rather detailed analysis performed in [ZZ2] demonstrates that it is not
possible to do this in uniform way with respect to t. Moreover, calculations of the
Stokes operators associated with the third order hypergeometric equation (1.1)d=3

demonstrate that the Stokes operators at the two endpoints of the interval (0, 1)
are essentially different.

When studying the Stokes phenomenon in [He] and [Fed] greater attention is
focused on analytic properties of the WKB solutions with respect to the time t,
while the parameter x ≈ +∞ is usually real. The so called Stokes lines are drawn
in the complex t−plane near the ‘turning points’ points t = 0 and t = 1. In
this section we focus our attention on the parameter x, which will vary in whole
sectors near infinity, and the time t will vary in a small neighborhood of the interval
(β, 1− β) ⊂ C (like in Section 4.3).

Below we firstly calculate the Stokes operators for the Bessel type equations

(5.14)d=2,3 and (5.15)d=2,3, i.e. in the WKB bases G̃σ and H̃σ in Eqs. (5.13).
We use essentially two methods: one from the book of J. Heading [He] and using
perturbation of the Bessel type equations to equations with regular singularities
and then considering corresponding monodromy matrices. An alternative approach
is to use results of the paper [DuMi] which imply that the principal Stokes matrix
differs from the identity only at one place.

It is worth to underline the fact that the Heading’s method is sufficient only in
the case d = 2. In the case d ≥ 3 it is insufficient.
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Finally, in the second part of this section, we apply the results about the Bessel
type equations to analysis of the Stokes phenomenon for the principal WKB so-
lutions gσprinc and hσprinc the hypergeometric equation (1.1). We show that the

connection coefficient Ad(x) from Lemma 3.2 is a sum of WKB type the formal
summands Fσ, they are subject to Stokes phenomenon which is trivial in the case
d = 2 and nontrivial in the case d = 3.

7.1. Stokes operators for the Bessel type equations.

7.1.1. The case d = 2. We begin with Eq. (5.14)d=2. By a sectorial normalization

theorem the solutions G̃±(v) from Eq. (5.13)d=2 represent asymptotic series for

solutions G̃±r,l(v) which are analytic in some sectors about v =∞ (in the complex

v−plane).

There are two such sectors: Sr (right) and Sl (left) with vertex at ∞ of angle
2π − 2δ (δ > 0 and small) and with the rays arg v = 0 and arg v = π as their
bisectrices. The latter rays are called the rays of division. Then the sectors
Su = Sr ∩ Sl ∩ {Im v > 0} , and Sd = Sr ∩ Sl ∩ {Im v < 0} have angle π − 2δ.
The sectors Su and Sd are ‘transitional’ sectors; their bisectrices are called the

Stokes lines. G̃±r and G̃±l are the corresponding solutions in the sectors Sr and
Sl respectively obtained from the sectorial normalization theorem.

We note the following relations (where f ≺ h means that the function f is much
smaller than the functions h) :

(7.1) G̃+
r,l ≺ G̃

−
r,l in Su, G̃−r,l ≺ G̃

+
r,l in Sd.

The solutions G̃±r (respectively G̃±l ) are analytic in the adjacent sectors Su (up)
and Sd (down). Therefore they are expressed as linear linear combinations of the

corresponding solutions G̃±l (respectively G̃±r ). The corresponding matrices Cu and
Cd of changes between the basic solutions are called the Stokes matrices.

Each Stokes matrix is triangular with 1 on the diagonal. We have

(7.2) Cu =

(
1 c12

0 1

)
, Cd =

(
1 0
c21 1

)
.

This means that, after passing from the sector Sr to the sector Sl, the basic solutions
undergo the following changes:

G̃+
r = G̃+

l , G̃−r = G̃−l + c12G̃
+
l (in Su),(7.3)

G̃+
l = G̃+

r + c21G̃
−
l , G̃−l = G̃−r (in Sd).(7.4)

The rule is that to a given solution one can add a solution with smaller asymptotic
at infinity. We shall calculate the coefficients c12 and c21 using the method from
[He], where Stokes matrices associated with the Bessel equation were computed
(see also [Zo3]).
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We note also the following symmetry property :

(7.5) G̃+
l (eiπv) = −G̃−r (v), G̃−l (eiπv) = G̃+

r (v), v > 0.

Let G̃+
r (v) on the ray arg v = 0 (in the sector Sr) be represented by the following

combination of the basic solutions Φ̃1(v) = Φ1(v2), Φ̃2(v) = Φ2(v2) = Φ̃1 ln v2 +

Ψ̃2(v2) :

(7.6) G̃+
r (v) = K1Φ̃1(v) +K2Φ̃2(v), v > 0,

for some coefficients K1 and K2. After passing to the ray arg v = π (in Sl) and the

substitution v → −v (using Eqs. (7.5) and the logarithmic singularity of Φ̃2) we
get

(7.7) −G̃−r (v) = (K1 + 2πiK2)Φ̃1(v) +K2Φ̃2(v), v > 0.

Analogously, after passing to the ray arg x = 2π and using an analogue of the
relations (7.5), we get

(7.8) −G̃+
r (v)− c21G̃

−
r (v) = (K1 + 4πiK2)Φ̃1(v) +K2Φ̃2(v), v > 0.

Eqs. (7.6)–(7.8) imply the representation (on arg v = 0)

Φ̃1(v) =
i

2πK2
(G̃+

r + G̃−r ), Φ̃2(v) =

(
1

K2
− iK1

2πK2
2

)
G̃+
r −

iK1

2πK2
2

G̃−r ,

and that

c21 = 2.

Moreover, the asymptotic formula (6.18) implies that K2 = i/
√
π.

In the same way one proves that c12 = −2 and obtains the representation

Φ̃1(v) =
1

2
√
π

(G̃−l − G̃
+
l ), arg v = π.

Calculation of the Stokes matrices associated with the Bessel type equation
(5.15)d=2 runs practically in the same way as above. The formal WKB solutions

H̃±(w) =
√
−w±e−2w±

{
1 +

b1
w±

+
b2
w2
±
− . . .

}
, w± = ±iw.

satisfy the Bessel type equation (5.15)d=2 with another pair of solutions

(7.9) Θ̃1(w) = w − 1

2
w2 + . . . , Θ̃2(w) = Θ̃1(w) · lnw + Ξ̃3(w)

(with analytic Θ̃1 and Ξ̃3).

Now we have the same sectors Sr,l, with analytic solutions H̃±r,l, and Su,d about

w = ∞, but with domination relations different than in Eq. (7.1). Therefore the
corresponding Stokes matrices take the following form

(7.10) Du =

(
1 0
d21 1

)
, Dd =

(
1 d12

0 1

)
.



MZV AND WKB 191

Anyway (using also Eqs. (6.20)) we arrive to the following result, where Eq. (7.17)

is a consequence of the factor
√−w± in definition of H̃±: we have H̃±l (e2πiw) =

−H̃±l (w).

We summarize this in the following

Proposition 4. (a) We have c12 = −2 and c21 = 2 in Eqs (7.2). Moreover,

Φ̃1(v) =
1

2
√
π

(
G̃+
r + G̃−r

)
, Φ̃2 = −i

√
π · G̃+

r mod Φ̃1, arg v = 0;(7.11)

Φ̃1(v) =
1

2
√
π

(
G̃−l − G̃

+
l

)
, Φ̃2 = −i

√
π · G̃+

l mod Φ̃1, arg v = π.(7.12)

(b) We have d12 = −2 and d21 = 2 in Eqs (7.10). Moreover,

Θ̃1 =
1

2
√
π

(
H̃r + H̃−r

)
, Θ̃2 = −i

√
π · H̃+

r mod Θ̃1, argw = 0;(7.13)

Θ̃1 =
1

2
√
π

(
H̃−l − H̃

+
l

)
, Θ̃2 = i

√
π · H̃−l mod Θ̃1, argw = π.(7.14)

In particular, we get

H̃+
r (w) = −H̃−r =

(
i/
√
π
)
· Θ̃2 mod Θ̃1, argw = 0;(7.15)

H̃+
l (w) = H̃−l =

(
−i/
√
π
)
· Θ̃2 mod Θ̃1, argw = π;(7.16)

H̃+
l (w) = −H̃−l =

(
i/
√
π
)
· Θ̃2 mod Θ̃1, argw = −π.(7.17)

Above we give the representation of the function Φ̃1(v) for v on the two rays
of division. But, in fact, these formulas hold true in the whole sectors Sr,l which
contains the corresponding ray of division. The same remark applies in other
expansions.

7.1.2. The case d = 3. Eq. (5.14)d=3 has the following independent solutions

Φ̃1(v) = Φ1(v3), Φ̃2(v) = Φ̃1 ln v3 + Ψ̃2(v), Φ̃3 =
1

2
Φ1 ln2(v3) + Ψ̃2 ln v3 + Ψ̃3,

where Φ̃1, Ψ̃2 and Ψ̃3 are entire functions and depend on v3. We have also the

system G̃σj of WKB type solutions defined in the sectors Sj about v =∞ (see Eq.
(5.16) and Figure 1 below).

The rays of division Rj (or the anti-Stokes lines) are given by arg v = 0, π/3,
2π/3, π, 4π/3, 5π/3, i.e. they are the bisectrices of the sectors Sj . Then the sectors
S12 = S1 ∩ S2, S23, S34, S45, S56, S61 have angle π/3 − δ (see Figure 1); their
bisectrices are known as the Stokes lines. The corresponding Stokes matrices Cji

are the matrices of changes between the basic solutions
{
G̃σi

}
and

{
G̃σj

}
in the

sectors Si and Sj .
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Each matrix Cji, after suitable ordering of the basic solutions, becomes upper
triangular with 1’s on the diagonal. For example, in the sector S12 we have

G̃−j ≺ G̃
ε
j ≺ G̃ε̄j , j = 1, 2.

The Stokes matrix associated with the sector S12 equals

(7.18) C21 =

 1 a b
0 1 c
0 0 1

 ,
where the parameters a, b, c are to be determined.

Other Stokes matrices can be obtained from the matrix C21 using the fact that
Eq. (5.16) is invariant with respect to:

— the rotation v → ε2v (where ε = eiπ/3),

— the complex conjugation v → v̄.

Formally the rotation ε2v is reflected in the cyclic permutation of solutions,

G̃σj+2(ε2v) = G̃ε
2σ
j (v). The double rotation results in the change G̃σj+4(ε4v) =

G̃ε
4σ
j (v). The complex conjugation induces the change G̃σj (v) = G̃σ̄7−j(v̄); but here

also the orientation of the v−plane is reversed. Compare also Eqs. (4.27)–(4.28).

Figure 1. Rays of division

Therefore the Stokes matrices C43 and C65 are obtained from C21 by application
of conjugation with suitable permutation matrices. The matrix C16 is obtained
from C21 by: complex conjugation, taking the inverse and conjugation with the
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permutation (1) (23) . The matrices C32 and C54 are obtained from the matrix C16

by permutations.

In the calculation of the Stokes matrix C21 we follow the Heading method de-

scribed in the previous section for the case d = 2. We represent the function G̃−(v)

in the ray R1 = {arg v = 0} in the basis
{

Φ̃j

}
,

G̃−1 = K1Φ̃1 +K2Φ̃2 +K3Φ̃3

(with coefficients Kj), and we pass to the rays R3, R5 and R1, using actions of the
matrices C31 = C32C21, C53 = C54C43 and C15 = C16C65 and substitutions ε2v,
ε4v and ε6v in the argument. We arrive at the following relation

(7.19) b = 3 + ā+ c̄,

but the parameters a and c are not determined.

We repeat the same analysis, but starting from the ray R6 = {arg v = −π/3}
and use the matrices C26 = C21C16, C42 and C64. Again we get relation (7.19).

In order to calculate the constants a and c we use the known property (see [Gl]
or [Zo1]) that Stokes operators are limits of monodromy operators of a perturbed
equation which has regular singularities.

An obvious perturbation of Eq. (5.3) is the our initial hypergeometric equation,
i.e. (1 − yx−3)∂yy∂yy∂yG + G = 0, and the corresponding perturbation of Eq.
(5.14) is

(7.20)
(
1− (v/x)3

)
∂vv∂vv∂vG̃+ 27v2G̃ = 0.

Together with perturbation (7.20) we shall consider the following one:

(7.21)
(
1 + (v/x)3

)
∂vv∂vv∂vG̃+ 27v2G̃ = 0,

i.e. with change of the sign before (v/x)
3
.

Eq. (7.20) has three additional singular points v1 = x, v2 = ε2x, v3 = ε−2x
which tend to infinity as x→∞ and where we assume that x is real positive. The
latter singular points lie in the division rays R1, R3 and R5 and the monodromy
matrices M1, M2 and M3 (in some basis of solutions) defined by prolongation of
solutions along curves around these points (in the clockwise direction) should tend
(as x→∞) to matrices equivalent to C−1

26 , C
−1
42 and C−1

64 respectively.

On the other hand, each monodromy matrix Mj , j = 1, 2, 3, is equivalent to
some monodromy matrix M1 related with the hypergeometric equation (1.1)d=3

and corresponding to the singular point t = 1. Since the basic solutions of the latter
equation near s = 1 − t = 0 are s + . . . , s2 + . . . , and (s2 + . . .) lnx3s + α + . . .
the corresponding monodromy matrix M1 has all eigenvalues equal to 1 and its
Jordan decomposition consists of two cells; anyway, the characteristic polynomial
is P (λ) = det (M1 − λ) = (1 − λ)3. Looking at the matrix C26 in [ZZ3] one finds
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that its characteristic polynomial is
(

1− λ)(λ2 −
(

2− |c|2
)
λ+ 1

)
. It follows that

c = 0.

Equation (7.21) is related with the modified hypergeometric equation (1 +
t)∂t∂t∂g +x3g = 0, where one checks that the basic solutions near s = 1+t = 0 are
s+ . . . , s2 + . . . and

(
s2 + . . .

)
ln s+ . . . . Here also the corresponding monodromy

matrix has eigenvalues 1 and two Jordan cells. On the other hand, the monodromy
matrices related with the singular points v = −x, εx, ε̄x of equation (7.21) tend to
the matrices C−1

53 , C
−1
31 , C

−1
16 . The same arguments as above show that a = 0.

From the above we get the following result.

Proposition 5. The principal Stokes matrix associated with the WKB bases
(
G̃σ1

)
and

(
G̃σ2

)
, σ = −1, ε, ε̄, takes the form

C21 =

 1 0 3
0 1 0
0 0 1

 .
Moreover we have the following representations:

(7.22)

Φ̃1 = 1
π
√

3
(G̃ε1 + G̃ε̄1 − 2G̃−1 ),

Φ̃2 = i√
3
(G̃ε̄1 − G̃ε1) mod Φ̃1,

Φ̃3 = − 4π√
3
G̃−1 mod

(
Φ̃1, Φ̃2

)
(for v ∈ R1). Analogous representations hold in other rays of division:

(7.23)
Φ̃1 = 1

π
√

3
(G̃−j + G̃εj + G̃ε̄j), v ∈ Rj , j = 2, 4, 6,

= 1
π
√

3
(G̃−j + G̃εj + G̃ε̄j − 3G̃∗j ), v ∈ Rj , (j, ∗) = (1,−), (3, ε), (5, ε̄).

Note that in the ray R1 two dominating WKB solutions G̃ε and G̃ε̄ are of the
the same order. So the coefficients between them in Eq. (7.22) are determined
by the asymptotic of the oscillating integral (via the stationary phase formula).

The coefficients before G̃ε and G̃ε̄ in Eq. (7.22) agree with Proposition 2, but the

coefficient before G̃− is different.

From the proof of Proposition 5 it is seen that using only the method from the
Heading’s book [He] we are not able to compute all the Stokes matrices, we obtain
only one relation (7.19). On the other hand, only the knowledge of the Jordan
decomposition of the composed Stokes matrices, like C31, does not allow to obtain
relation (7.19). Therefore the both methods should be used. Probably this fact is
true in more general high order linear meromorphic ODE’s.

Of course, the relative simplicity of the principal Stokes matrix can be explained

by the fact that the domains of analyticity of the functions G̃σj are larger than the
sectors Sj (compare Section 5.2).
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As we have mentioned, the Stokes matrices associated with the WKB solutions
GσDM from Remark 3 were calculated by A. Duval and C. Mitschi [DuMi]. Their
calculations rely upon properties of the Mellin–Barnes integrals proved by C. Meijer
[Me]. Anyway, their result completely agrees with ours.8

The analysis leading to Stokes operators associated with formal WKB solutions

H̃σ(w) ∼
√
−σwe−3σw/2 (see Eq. (5.11)) which are asymptotic series for analytic

WKB solutions H̃σ
j defined in sectors Sj about w = ∞ (see Eq. (5.17)) leads to

the following result. Below the constants

L1 =
√

3/2 and L3 = (−i/4)
√

3/2π

appear in the representation

H−4 = L1Θ̃1 + L2Θ̃2 + L3Θ̃3, w ∈ R4,

and are taken from Eq. (6.21).

Proposition 6. The principal Stokes matrix associated with the WKB bases
(
H̃σ

4

)
and

(
H̃σ

5

)
, σ = −1, ε, ε̄, takes the form

C54 =

 1 0 1
0 1 0
0 0 1

 .
Moreover we have the following representation:

(7.24)

4L1Θ̃1 = 2H̃−4 − H̃ε
4 − H̃ ε̄

4,

4πiL3Θ̃2 = −H̃ε
4 + H̃ ε̄

4,

4L3Θ̃3 = 2(H̃−4 + H̃ε
4) mod Θ̃2

for w ∈ R4 and 0 < t < 1. The representations in other rays Rj (and 0 < t < 1) are

presented in [ZZ3, Prop. 5.5]. This implies the following relations mod
(

Θ̃1, Θ̃2

)
:

(7.25)

H̃−1 = 0, − H̃ε
1 = H̃ ε̄

1 = L3Θ̃3, w ∈ R1

H̃−2 = −H̃ε
2 = H̃ ε̄

2 = L3Θ̃3, w ∈ R2

H̃ε
3 = 0, H̃−3 = H̃ ε̄

3 = L3Θ̃3, w ∈ R3

H̃−4 = H̃ε
4 = H̃ ε̄

4 = L3Θ̃3, w ∈ R4

H̃ ε̄
5 = 0, H̃−5 = H̃ε

5 = L3Θ̃3, w ∈ R5

H̃−6 = H̃ε
6 = −H̃ ε̄

6 = L3Θ̃3, w ∈ R6

H̃−1 = 0, H̃ε
1 = −H̃ ε̄

1 = L3Θ̃3, w ∈ R1.

8In the sequent paper [Mit] Mitschi applied the results of [DuMi] to compute the differential

Galois groups of some confluent hypergeometric equations. Previously these groups were calcu-
lated in algebro–geometrical way (which avoids calculation of the Stokes constants) by N. Katz

[Ka1] and [Ka2]; the method of Katz was initiated in the paper [BBH].
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Note that for z > 0, i.e. w > 0, the value of Θ̃3 mod Θ̃2 agrees with Eq. (6.21),
which was obtained by calculation of corresponding mountain pass integrals.

Note also the difference between the data of the latter tables for the ray R1

(in the first and in the last row in Eq. (7.25)). It corresponds to the turning

w 7−→ e2πiw. Here Θ̃1 changes to −Θ̃1, Θ̃2 is unchanged, Θ̃3 acquires a term

proportional to Θ̃2 and H̃σ change to −H̃σ; all is OK.

7.2. Stokes operators for the hypergeometric equation. We deal with formal
WKB solutions for the hypergeometric equation as well as for the corresponding
Bessel type equations. By results of Section 5.2 the reductions to the normal (di-
agonal) form for associated with them systems are compatible. Recall that these
formal solutions are of Gevrey type and in suitable domains are represented by an-
alytic functions, but the above analytic constructions are not quite compatible. In
the other hand, the analytic equivalences with corresponding Bessel type equations
(using the matrices H0 and H1 in Section 5.3) imply compatibility of analytic and
of formal solutions.

So, in order to avoid technicalities, we limit ourselves to the formal case. This
is the way chosen in [ZZ3] for d = 3. In [ZZ1] the case d = 2 is done with complete
details.

7.2.1. The case d = 2. Let 0 < t < 1. Using Theorem 1 and Definition 3 we can

replace in Proposition 4 Φ̃j and Θ̃j with ϕj and θj and the WKB solutions G̃±j and

H̃±j with g±princ and h±princ. Therefore, for arg x = 0, we have

ϕ1 =
1

2
√
π

{
g+

princ + g−princ

}
=

1

2
√
π

{
F+(x)h+

princ + F−(x)h−princ

}
=

1

2
√
π
· i√

π

{
F+ − F−

}
· θ2 mod θ1.

For arg x = π we have

ϕ1 =
1

2
√
π

{
g−princ − g

+
princ

}
=

1

2
√
π
· −i√

π

{
F− − F+

}
· θ2 mod θ1.

Here F±(x) = 1
xe
±ixπω±(1/x), ω± = 1 +O(1/x) are defined in Definition 4 (com-

pare also Propositions 2 and 3). The above pattern repeats as arg x increases by
2π.
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We arrive at the following.

Proposition 7. The connection coefficient A2(x) from Lemma 2 equals

A2(x) =
i

2π

{
F+(x)− F−(x)

}
, x→∞,

where the functions F±(x) are single valued.

Second proof of the formula (1.8). We note that the function f2(x) =
−A2(x) vanishes at the points x = ±1,±2, . . . . Since the function sinπx/x has
simple zeroes at these points, we find that the function

f2(x)/ (sinπx/x)

is entire on C. By Proposition 7 it is bounded at infinity. Therefore it is a constant
function equal 1/π (since f(0) = 1).

7.2.2. The case d = 3. Here we follow the previous case with use of Propositions 5
and 6. For 0 < t < 1, we have

π
√

3ϕ1(t;x) = gεprinc + gε̄princ − 2g−princ, x ∈ R1,

gεprinc + gε̄princ + g−princ, x ∈ R2,

g−princ + gε̄princ − 2gεprinc, x ∈ R3,

gεprinc + gε̄princ + g−princ, x ∈ R4,

g−princ + gεprinc − 2gε̄princ, x ∈ R5,

gεprinc + gε̄princ + g−princ, x ∈ R6,

where gσprinc = Fσhσprinc.

We have also the following relation modulo (θ1, θ2) :

h−princ = 0, hε̄princ = −hεprinc = L3θ3, x ∈ R1,

and other relations like in Eqs. (7.25), where L3 = − i
8

√
3/2π.

This implies the following representations of the generating function f3(x) =
−2A3(x) :

(7.26)

−i (2π)
3/2

f3(x) = F ε̄ − F ε, x ∈ R1,
F ε̄ − F ε − F−, x ∈ R2,
F− + F ε̄, x ∈ R3,
F ε + F ε̄ + F−, x ∈ R4,
F− + F ε, x ∈ R5,
F− + F ε − F ε̄, x ∈ R6,

where Fσ = ±1
x3/2 e

2πσx/
√

3ωσ(x−1/2) are the WKB type functions from Definition
4.

Since Fσ(x) = Fσ±(x1/2) depend on x1/2 (see Eq. 5.22)), table (7.26) should be
continued in order to turn twice around x = ∞. The corresponding formulas are
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related with compositions of the changes from Eqs. (7.26) with the monodromy of
the functions Fσ± :

(7.27) M∞ : Fσ± 7−→ −Fσ∓.

We also see that the functions Fσ± are subject to Stokes phenomenon with the
principal Stokes matrix relating solutions at the rays R1 and R2 of the form

(7.28) C21 =

 1 p q
0 1 0
0 0 1

 , p− q = 1.

We can state the fundamental result of the whole paper.

Theorem 2. The collection
{
Fσ±
}

of WKB type functions is subject to the mon-
odromy (7.27) around x = ∞ and the Stokes phenomenon with the constant prin-
cipal matrix (7.28) (other Stokes matrices are obtained from this by applying the
conjugation and rotation symmetries). The generating function f3(x), which is
entire function of x, in each sector Sj near infinity is a linear combination with
constant coefficients of the functions Fσ±.

Moreover, the functions Fσ± are WKB solutions to a sixth order differential equa-
tion near x =∞ of the form

(7.29) ∂6
xf + a1∂

5
xf + a2∂

4
xf + a3∂

3
xf + a4∂

2
xf + a1∂xf + a6f = 0

with analytic coefficients

(7.30) aj(x) =
∑
k≥0

aj,kx
−j

such that

(7.31) a3,0 = 2S3(1)3, a6,0 = S3(1)6, a1,1 = a4,1, a2,1 = a5,1, a3,1 = a6,1.

Also the generating function f3(x) satisfies Eq. (7.29).

Proof. The first statement of the theorem (about the monodromy and the Stokes
matrices) is already proved. From this it follows that the space generated by the
functions Fσ±(x) near x = ∞ (or their analytic representatives) is invariant with
respect to monodromy around x =∞ and with respect to passing from one sector
to an adjacent sector. Since the monodromy matrix M∞ and the Stokes matrices
have constant coefficients, also the spaces generated by the successive derivatives
∂ixF

σ
± are invariant. As in other similar situations (see [Zo3]), we arrive to the

determinant equation

det


f ∂xf . . . ∂6

xf
F1 ∂xF1 . . . ∂6F1

. . . . . . . . . . . .
F6 ∂xF6 . . . ∂6F6

 = 0
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which is satisfied by the functions Fj (where we have ordered the functions Fσ± =
Fj). This equation is equivalent to Eq. (7.29), where the coefficients aj(x) are
ratios of some minors of sixth dimension and are holomorphic and single valued
functions of x.

The form (7.30) of the coefficients aj(x) and the relations (7.31) follow from

the fact that the WKB solutions have the form ∼ eσxS3(1)x−3/2. When we as-
sume a solution f ∼ eκxxγ , then we should get the ‘Hamilton–Jacobi equation’∑
j aj,0κ

6−j =
(
κ3 + S3(1)

)2
= 0 and the value γ = −3/2 implies the equation

6 · (σS3(1))
5 ·
(
−3

2

)
+ a3,0 · 3 · (σS3(1))

2 ·
(
−3

2

)
+
∑
j

aj,1 · (σS3(1))
j

= 0,

which is satisfied for any σ = −1, ε, ε̄.

Remark 6. It is highly interesting whether Eq. (7.29) can be prolonged to the
whole x−plane with the other singularity at x = 0. Indeed, the function f3(x) is its
solution and has very regular behavior at x = 0. So, maybe Eq. (7.29) has regular
singularity at x = 0.

But then each its coefficient aj(x) should be rational with pole at x = 0 of order
≤ j. Moreover, since f3 depends on x3, our equation should be of the form

(7.32)
f (V I) + c1x

−1f (V ) + c2x
−2f (IV ) +

(
c3 + c4x

−3
)
f (III)

+
(
c5x
−1 + c6x

−4
)
f (II) +

(
c7x
−2 + c8x

−5
)
f (I)

+
(
c9 + c10x

−3 + c11x
6
)
f = 0.

Then we get the following recurrence for the coefficients in f3 =
∑
bkx

3k :

{c11 + 3kc8 + 3k(3k − 1)c6 + 3k(3k − 1)(3k − 2)c4 + 3k . . . (3k − 3)c2
+3k . . . (3k − 4)c1 + 3k . . . (3k − 5)}bk+

{c10 + (3k − 3)c7 + (3k − 3)(3k − 4)c5 + (3k − 3) . . . (3k − 5)c3}bk−1

+c9bk−2 = 0.

In a particular, for k = 2 we get an equation relating b0 = 1, b1 = −ζ(3) and
b2 = ζ(3, 3) = 1

2

(
ζ(3)2 − ζ(6)

)
(where ζ(6) = π6/945). Since the coefficients cj

are potentially calculable, we could arrive at a quadratic equation for ζ(3) with

coefficients which most probably belong to the field Q(π,
√

3).

Recall that R. Apéry [Ap] was the first who proved the irrationality of ζ(3). If
our speculations turned out correct it would be quite spectacular achievement.

Another question is about the values of the constants p, q in the principal Stokes
matrix in Eq. (7.28). Probably p = 0 and q = −1.
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H. Poincaré. Phys. Théoret. 71 (1999), 1–94.
[DuMi] A. Duval et C. Mitschi, Matrices de Stokes et groupe de Galois des équations hy-
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